scispace - formally typeset
Search or ask a question
Author

Yongkang Dong

Other affiliations: University of Ottawa
Bio: Yongkang Dong is an academic researcher from Harbin Institute of Technology. The author has contributed to research in topics: Brillouin scattering & Brillouin zone. The author has an hindex of 26, co-authored 150 publications receiving 2308 citations. Previous affiliations of Yongkang Dong include University of Ottawa.


Papers
More filters
Journal ArticleDOI
TL;DR: A team of researchers from China and Canada has developed an innovative technique that generates a probe wave comprising short optical chirps that can be quickly demodulated by injecting a single-shot pump pulse into the fiber, which enables distributed ultrafast strain measurement with a single pump pulse.
Abstract: Brillouin optical time-domain analysis (BOTDA) requires frequency mapping of the Brillouin spectrum to obtain environmental information (e.g., temperature or strain) over the length of the sensing fiber, with the finite frequency-sweeping time-limiting applications to only static or slowly varying strain or temperature environments. To solve this problem, we propose the use of an optical chirp chain probe wave to remove the requirement of frequency sweeping for the Brillouin spectrum, which enables distributed ultrafast strain measurement with a single pump pulse. The optical chirp chain is generated using a frequency-agile technique via a fast-frequency-changing microwave, which covers a larger frequency range around the Stokes frequency relative to the pump wave, so that a distributed Brillouin gain spectrum along the fiber is realized. Dynamic strain measurements for periodic mechanical vibration, mechanical shock, and a switch event are demonstrated at sampling rates of 25 kHz, 2.5 MHz and 6.25 MHz, respectively. To the best of our knowledge, this is the first demonstration of distributed Brillouin strain sensing with a wide-dynamic range at a sampling rate of up to the MHz level.

157 citations

Journal ArticleDOI
TL;DR: A high-spatial-resolution and long-range distributed temperature sensor through optimizing differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA) is reported.
Abstract: We report a high-spatial-resolution and long-range distributed temperature sensor through optimizing differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). In DPP-BOTDA, the differential signal suffers from a signal-to-noise ratio (SNR) reduction with respect to the original signals, and for a fixed pulse-width difference the SNR reduction increases with the pulse width. Through reducing the pulse width to a transient regime (near to or less than the phonon lifetime) to decrease the SNR reduction after the differential process, the optimized 8/8.2 ns pulse pair is applied to realize a 2 cm spatial resolution, where a pulse generator with a 150 ps fall-time is used to ensure the effective resolution of DPP-BOTDA. In the experiment, a 2 cm spatial-resolution hot-spot detection with a 2 °C temperature accuracy is demonstrated over a 2 km sensing fiber.

155 citations

Journal ArticleDOI
TL;DR: A high-performance and long-range Brillouin optical time-domain analysis (BOTDA) based on time-division multiplexing measurement, where a probe pulse and a pump pulse are used to perform the measurement on a selected sensing section and the measurement of the entire sensing fiber is realized.
Abstract: We propose and demonstrate a high-performance and long-range Brillouin optical time-domain analysis (BOTDA) based on time-division multiplexing measurement, where a probe pulse and a pump pulse are used to perform the measurement on a selected sensing section, and the measurement of the entire sensing fiber is realized by combining the series measurements over different sections through changing the delay time between the two pulses. In experiment, a 100km sensing fiber is divided into 11 sections based on the gain-controlled principle, and spatial resolutions of 0.6m and 2m are obtained at the end of 75km and 100km, respectively.

129 citations

Journal ArticleDOI
TL;DR: In this article, a high-performance Brillouin optical time-domain analysis (BOTDA) system with an extended sensing range by combining frequency-division multiplexing and in-line Erbium doped fiber amplifiers (EDFAs) was demonstrated.
Abstract: We demonstrate a high-performance Brillouin optical time-domain analysis (BOTDA) system with an extended sensing range by combining frequency-division multiplexing and in-line Erbium doped fiber amplifiers (EDFAs). The frequency-division multiplexing BOTDA features multiple sections of fibers with different Brillouin frequency shifts, and it reduces the effective Brillouin interaction length to one resonant Brillouin frequency section rather than the entire length of the sensing fiber, so that the power of CW probe of BOTDA can be increased to enhance the Brillouin signal within individual sections and consequently extend the sensing range combined with high strain or temperature resolution with negligible pump depletion. In addition, in-line EDFAs placed between spans are used to compensate the fiber loss for similar Brillouin gains in each span. In experiment, a 150-km sensing range is achieved by dividing the sensing fibers into two spans of equal length and using two types of fibers in each span. Using the differential pulse-width pair technique, a 100/120 ns pulse pair is used to realize a 2-m spatial resolution and a measurement accuracy of 1.5°C/30 μe at the end of the sensing fibers.

106 citations

Journal ArticleDOI
TL;DR: The dynamic strain sensing with a range of 10-1000 nε is experimentally demonstrated, and the strain resolution is 1 or 2 nε, corresponding to 5 or 2.5 m spatial resolution, respectively.
Abstract: A sensing system is proposed for quantitative measurement of large-range dynamic nanostrain based on a phase-sensitive optical time domain reflectometer, where the coherent detection and I/Q demodulation methods are employed to demodulate both the phase and the amplitude of the Rayleigh scattering light in real time. A nanopositioning translation stage is utilized to apply precise nanostrain to fiber. By measuring phase differences between two adjacent sections, the quantitative nanostrain with a large measurement range is demonstrated; this is also a method to measure the strain parameter of refractive index. For the Panda polarization-maintaining fiber under test in the experiment, the strain parameter of phase difference is measured to be 8.714 mrad/(ne·m), while the strain parameter of refractive index is measured to be −0.3751e−1. As a proof of the concept, the dynamic strain sensing with a range of 10–1000 ne is experimentally demonstrated, and the strain resolution is 1 or 2 ne, corresponding to 5 or 2.5 m spatial resolution, respectively. The experimental measurement also shows a triangular wave with a 12-Hz vibrating frequency and a 100-ne strain amplitude as well as a 188-Hz resonant signal of the tensile section.

98 citations


Cited by
More filters
Journal ArticleDOI
26 Jun 2012-Sensors
TL;DR: A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Abstract: Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

1,011 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental properties and latest developments in high-power fiber lasers are summarized and reviewed, focusing primarily on the most common fiber laser configurations and the associated cladding pumping issues.
Abstract: In this paper, we summarize the fundamental properties and review the latest developments in high power fiber lasers. The review is focused primarily on the most common fiber laser configurations and the associated cladding pumping issues. Special attention is placed on pump combination techniques and the parameters that affect the brightness enhancement observed in single-mode and multimode high power fiber lasers. The review includes the major limitations imposed by fiber nonlinearities and other parasitic effects, such as optical damage, transverse modal instabilities and photodarkening. Finally, the paper summarizes the power evolution in continuous-wave and pulsed ytterbium-doped fiber lasers and their impact on industrial applications.

812 citations

Journal ArticleDOI
23 May 2016-Sensors
TL;DR: The latest developments related with the improvement of these products are presented by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.
Abstract: The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures

572 citations

Journal ArticleDOI
07 Apr 2011-Sensors
TL;DR: The progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement is reviewed.
Abstract: Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures.

491 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the state-of-the-art research in this fascinating field and possible outcomes in the near future, as well as a review of the current state of the art in this field.
Abstract: The ubiquitous role of optical fibres in modern photonic systems has stimulated research to realize slow and fast light devices directly in this close-to-perfect transmission line. Recent progress in developing optically controlled delays in optical fibres, operating under normal environmental conditions and at telecommunication wavelengths, has paved the way towards real applications for slow and fast light. This review presents the state-of-the-art research in this fascinating field and possible outcomes in the near future.

380 citations