scispace - formally typeset
Search or ask a question
Author

Yongmei Zheng

Other affiliations: Chinese Academy of Sciences
Bio: Yongmei Zheng is an academic researcher from Beihang University. The author has contributed to research in topics: Lotus effect & Fiber. The author has an hindex of 27, co-authored 34 publications receiving 4991 citations. Previous affiliations of Yongmei Zheng include Chinese Academy of Sciences.

Papers
More filters
Journal ArticleDOI
04 Feb 2010-Nature
TL;DR: Artificial fibres are designed that mimic the structural features of silk and exhibit its directional water-collecting ability by tapping into both driving forces.
Abstract: Many biological surfaces in both the plant and animal kingdom possess unusual structural features at the micro- and nanometre-scale that control their interaction with water and hence wettability. An intriguing example is provided by desert beetles, which use micrometre-sized patterns of hydrophobic and hydrophilic regions on their backs to capture water from humid air. As anyone who has admired spider webs adorned with dew drops will appreciate, spider silk is also capable of efficiently collecting water from air. Here we show that the water-collecting ability of the capture silk of the cribellate spider Uloborus walckenaerius is the result of a unique fibre structure that forms after wetting, with the 'wet-rebuilt' fibres characterized by periodic spindle-knots made of random nanofibrils and separated by joints made of aligned nanofibrils. These structural features result in a surface energy gradient between the spindle-knots and the joints and also in a difference in Laplace pressure, with both factors acting together to achieve continuous condensation and directional collection of water drops around spindle-knots. Submillimetre-sized liquid drops have been driven by surface energy gradients or a difference in Laplace pressure, but until now neither force on its own has been used to overcome the larger hysteresis effects that make the movement of micrometre-sized drops more difficult. By tapping into both driving forces, spider silk achieves this task. Inspired by this finding, we designed artificial fibres that mimic the structural features of silk and exhibit its directional water-collecting ability.

1,584 citations

Journal ArticleDOI
TL;DR: Direction adhesion on the superhydrophobic wings of the butterfly is showed and it is believed that this finding will help the design of smart, fluid-controllable interfaces that may be applied in novel microfluidic devices and directional, easy-cleaning coatings.
Abstract: We showed directional adhesion on the superhydrophobic wings of the butterfly Morpho aega. A droplet easily rolls off the surface of the wings along the radial outward (RO) direction of the central axis of the body, but is pinned tightly against the RO direction. Interestingly, these two distinct states can be tuned by controlling the posture of the wings (downward or upward) and the direction of airflow across the surface (along or against the RO direction), respectively. Research indicated that these special abilities resulted from the direction-dependent arrangement of flexible nano-tips on ridging nano-stripes and micro-scales overlapped on the wings at the one-dimensional level, where two distinct contact modes of a droplet with orientation-tuneable microstructures occur and thus produce different adhesive forces. We believe that this finding will help the design of smart, fluid-controllable interfaces that may be applied in novel microfluidic devices and directional, easy-cleaning coatings.

1,004 citations

Journal ArticleDOI
TL;DR: Two biomimetic approaches are proposed for the fabrication of high-adhesion superhydrophobic surfaces that mimic a sticky gecko's foot and microstructures with size and topography similar to that of a rose petal, which will offer innovative insights into the design of novel antibioadhesion materials.
Abstract: Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rolling in the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, we developed materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for water droplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields. In addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces with special adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in the micro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings will offer innovative insights into the design of novel antibioadhesion materials.

552 citations

Journal ArticleDOI
Peng Guo1, Yongmei Zheng1, Mengxi Wen1, Cheng Song1, Yucai Lin1, Lei Jiang1 
TL;DR: Using materials such as florocarbons, organic materials, and inorganic materials, which demonstrate signifi cant hydrophobic properties to design and fabricate more ice repellent surfaces, which has aroused the interest of many researchers.
Abstract: using materials such as fl uorocarbons, organic materials, and inorganic materials, [ 6 ] which demonstrate signifi cant hydrophobic properties. Whereas the robust superhydrophobicity of these materials exists at around room temperature, the overwhelming majority of them will fail when put into a subzero degree environment. [ 7 ] It is well known that hydrophobicity and icephobicity properties are extremely important to favor cold environment devices, [ 8 ] such as aerofoils, power towers, ships, radars, and even pipes of airconditioners or refrigerators. Once ice forms on this equipment, they may fail to work normally or may even be damaged. Anti-icing surfaces have been studied since the 1950s. [ 9 ] However, it is still a great challenge to design and fabricate more effi cient ice repellent surfaces, which has aroused the interest of many researchers. [ 7 , 10–25 ]

514 citations

Journal ArticleDOI
TL;DR: In this article, a polyaniline/polystyrene composite film with a lotus-leaf-like structure is prepared via a simple electrospinning method, which shows stable superhydrophobicity and conductivity, even in many corrosive solutions, such as acidic or basic solutions over a wide pH range, and also in oxidizing solutions.
Abstract: A polyaniline/polystyrene composite film with a lotus-leaf-like structure is prepared via a simple electrospinning method. The film shows stable superhydrophobicity and conductivity, even in many corrosive solutions, such as acidic or basic solutions over a wide pH range, and also in oxidizing solutions. The special surface composition and morphology are the two important aspects that induce such unusual properties. The polystyrene content can strongly influence the morphology of the composite films, which thus display different superhydrophobicities and conductivities.

317 citations


Cited by
More filters
Journal ArticleDOI
04 Feb 2010-Nature
TL;DR: Artificial fibres are designed that mimic the structural features of silk and exhibit its directional water-collecting ability by tapping into both driving forces.
Abstract: Many biological surfaces in both the plant and animal kingdom possess unusual structural features at the micro- and nanometre-scale that control their interaction with water and hence wettability. An intriguing example is provided by desert beetles, which use micrometre-sized patterns of hydrophobic and hydrophilic regions on their backs to capture water from humid air. As anyone who has admired spider webs adorned with dew drops will appreciate, spider silk is also capable of efficiently collecting water from air. Here we show that the water-collecting ability of the capture silk of the cribellate spider Uloborus walckenaerius is the result of a unique fibre structure that forms after wetting, with the 'wet-rebuilt' fibres characterized by periodic spindle-knots made of random nanofibrils and separated by joints made of aligned nanofibrils. These structural features result in a surface energy gradient between the spindle-knots and the joints and also in a difference in Laplace pressure, with both factors acting together to achieve continuous condensation and directional collection of water drops around spindle-knots. Submillimetre-sized liquid drops have been driven by surface energy gradients or a difference in Laplace pressure, but until now neither force on its own has been used to overcome the larger hysteresis effects that make the movement of micrometre-sized drops more difficult. By tapping into both driving forces, spider silk achieves this task. Inspired by this finding, we designed artificial fibres that mimic the structural features of silk and exhibit its directional water-collecting ability.

1,584 citations

Journal ArticleDOI
TL;DR: The origins of water-repellent surfaces are discussed, examining how size and shape of surface features are used to control surface characteristics, in particular how techniques have progressed to form multi-scaled roughness to mimic the lotus leaf effect.
Abstract: Research into extreme water-repellent surfaces began many decades ago, although it was only relatively recently that the term superhydrophobicity appeared in literature Here we review the work on the preparation of superhydrophobic surfaces, with focus on the different techniques used and how they have developed over the years, with particular focus on the last two years We discuss the origins of water-repellent surfaces, examining how size and shape of surface features are used to control surface characteristics, in particular how techniques have progressed to form multi-scaled roughness to mimic the lotus leaf effect There are notable differences in the terminology used to describe the varying properties of water-repellent surfaces, so we suggest some key definitions

1,526 citations

Journal ArticleDOI
TL;DR: Design, and Applications Shutao Wang,“, Kesong Liu, Xi Yao, and Lei Jiang*,†,‡,§ †Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, and ‡Beijing National Laboratory for Molecular Science.
Abstract: Design, and Applications Shutao Wang,†,‡ Kesong Liu, Xi Yao, and Lei Jiang*,†,‡,§ †Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, and ‡Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, BeiHang University, Beijing 100191, People’s Republic of China Department of Biomedical Sciences, City University of Hong Kong, Hong Kong P6903, People’s Republic of China

1,218 citations

Journal ArticleDOI
TL;DR: In this article, the authors report metallic cobalt pyrite (cobalt disulfide, CoS2) as one such high-activity candidate material and demonstrate that its specific morphology plays a crucial role in determining its overall catalytic efficacy.
Abstract: The development of efficient and robust earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) is an ongoing challenge. We report metallic cobalt pyrite (cobalt disulfide, CoS2) as one such high-activity candidate material and demonstrate that its specific morphology—film, microwire, or nanowire, made available through controlled synthesis—plays a crucial role in determining its overall catalytic efficacy. The increase in effective electrode surface area that accompanies CoS2 micro- and nanostructuring substantially boosts its HER catalytic performance, with CoS2 nanowire electrodes achieving geometric current densities of −10 mA cm–2 at overpotentials as low as −145 mV vs the reversible hydrogen electrode. Moreover, micro- and nanostructuring of the CoS2 material has the synergistic effect of increasing its operational stability, cyclability, and maximum achievable rate of hydrogen generation by promoting the release of evolved gas bubbles from the electrode surface. The benefits of ca...

1,135 citations