scispace - formally typeset
Search or ask a question
Author

Yongming Han

Bio: Yongming Han is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Aerosol & Pollution. The author has an hindex of 42, co-authored 120 publications receiving 7909 citations. Previous affiliations of Yongming Han include Lamont–Doherty Earth Observatory & Beijing Normal University.


Papers
More filters
Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: The results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from fossil fuel combustion and biomass burning is likely to be important for controlling China’s PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Abstract: Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

3,372 citations

Journal ArticleDOI
TL;DR: It is highlighted that improved understanding of the emission sources, physical/chemical processes during haze evolution, and interactions with meteorological/climatic changes are necessary to unravel the causes, mechanisms, and trends for haze pollution.
Abstract: Regional severe haze represents an enormous environmental problem in China, influencing air quality, human health, ecosystem, weather, and climate. These extremes are characterized by exceedingly high concentrations of fine particulate matter (smaller than 2.5 µm, or PM2.5) and occur with extensive temporal (on a daily, weekly, to monthly timescale) and spatial (over a million square kilometers) coverage. Although significant advances have been made in field measurements, model simulations, and laboratory experiments for fine PM over recent years, the causes for severe haze formation have not yet to be systematically/comprehensively evaluated. This review provides a synthetic synopsis of recent advances in understanding the fundamental mechanisms of severe haze formation in northern China, focusing on emission sources, chemical formation and transformation, and meteorological and climatic conditions. In particular, we highlight the synergetic effects from the interactions between anthropogenic emissions and atmospheric processes. Current challenges and future research directions to improve the understanding of severe haze pollution as well as plausible regulatory implications on a scientific basis are also discussed.

586 citations

Journal ArticleDOI
TL;DR: PM2.5 mass and chemical composition show large contributions from carbon, sulfate, nitrate, ammonium, and fugitive dust during winter and summer and across fourteen large cities.
Abstract: PM2.5 in 14 of China's large cities achieves high concentrations in both winter and summer with averages >100 μg m−3 being common occurrences. A grand average of 115 μg m−3 was found for all cities, with a minimum of 27 μg m−3 measured at Qingdao during summer and a maximum of 356 μg m−3 at Xi'an during winter. Both primary and secondary PM2.5 are important contributors at all of the cities and during both winter and summer. While ammonium sulfate is a large contributor during both seasons, ammonium nitrate contributions are much larger during winter. Lead levels are still high in several cities, reaching an average of 1.68 μg m−3 in Xi'an. High correlations of lead with arsenic and sulfate concentrations indicate that much of it derives from coal combustion, rather than leaded fuels, which were phased out by calendar year 2000. Although limited fugitive dust markers were available, scaling of iron by its ratios in source profiles shows ∼20% of PM2.5 deriving from fugitive dust in most of the cities. Mult...

357 citations

Journal ArticleDOI
TL;DR: In this article, Li et al. measured PM 2.5 and water-soluble inorganic ions (Na +, NH 4 +, K +, Mg 2+, Ca 2+, Cl −, NO 3 − and SO 4 2− ) using battery-powered mini-volume samplers.

251 citations

Journal ArticleDOI
TL;DR: The thermal/optical reflectance (TOR) method applies different temperatures for measuring EC and organic carbon contents through programmed, progressive heating in a controlled atmosphere, making available eight separate carbon fractions - four OC, one pyrolyzed organic carbon, and three EC.

238 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations

01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

Journal ArticleDOI
01 Jun 1965-Nature
TL;DR: Polycyclic Hydrocarbons Vol. 1, No. 2 as mentioned in this paper, with a chapter on carcinogenesis by Regina Schoental. Pp. lvii + 487.
Abstract: Polycyclic Hydrocarbons Vol. 1. Pp. xxvi + 487. 126S. (With a chapter on carcinogenesis by Regina Schoental.) Vol. 2. Pp. lvii + 487. 140s. By E. Clar. (London and New York: Academic Press; Berlin: Springer-Verlag, 1964.)

1,175 citations

Journal ArticleDOI
TL;DR: The measure-by-measure evaluation indicated that strengthening industrial emission standards, upgrades on industrial boilers, phasing out outdated industrial capacities, and promoting clean fuels in the residential sector were major effective measures in reducing PM2.5 pollution and health burdens in China.
Abstract: From 2013 to 2017, with the implementation of the toughest-ever clean air policy in China, significant declines in fine particle (PM2.5) concentrations occurred nationwide. Here we estimate the drivers of the improved PM2.5 air quality and the associated health benefits in China from 2013 to 2017 based on a measure-specific integrated evaluation approach, which combines a bottom-up emission inventory, a chemical transport model, and epidemiological exposure-response functions. The estimated national population-weighted annual mean PM2.5 concentrations decreased from 61.8 (95%CI: 53.3-70.0) to 42.0 µg/m3 (95% CI: 35.7-48.6) in 5 y, with dominant contributions from anthropogenic emission abatements. Although interannual meteorological variations could significantly alter PM2.5 concentrations, the corresponding effects on the 5-y trends were relatively small. The measure-by-measure evaluation indicated that strengthening industrial emission standards (power plants and emission-intensive industrial sectors), upgrades on industrial boilers, phasing out outdated industrial capacities, and promoting clean fuels in the residential sector were major effective measures in reducing PM2.5 pollution and health burdens. These measures were estimated to contribute to 6.6- (95% CI: 5.9-7.1), 4.4- (95% CI: 3.8-4.9), 2.8- (95% CI: 2.5-3.0), and 2.2- (95% CI: 2.0-2.5) µg/m3 declines in the national PM2.5 concentration in 2017, respectively, and further reduced PM2.5-attributable excess deaths by 0.37 million (95% CI: 0.35-0.39), or 92% of the total avoided deaths. Our study confirms the effectiveness of China's recent clean air actions, and the measure-by-measure evaluation provides insights into future clean air policy making in China and in other developing and polluting countries.

1,085 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF) for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source.
Abstract: . In this study, 121 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months between April 2009 and January 2010 representing the four seasons. The samples were determined for various compositions, including elements, ions, and organic/elemental carbon. Various approaches, such as chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF), were employed for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source. Our results have shown distinctive seasonality for various aerosol speciations associated with PM2.5 in Beijing. Soil dust waxes in the spring and wanes in the summer. Regarding the secondary aerosol components, inorganic and organic species may behave in different manners. The former preferentially forms in the hot and humid summer via photochemical reactions, although their precursor gases, such as SO2 and NOx, are emitted much more in winter. The latter seems to favorably form in the cold and dry winter. Synoptic meteorological and climate conditions can overwhelm the emission pattern in the formation of secondary aerosols. The PMF model identified six main sources: soil dust, coal combustion, biomass burning, traffic and waste incineration emission, industrial pollution, and secondary inorganic aerosol. Each of these sources has an annual mean contribution of 16, 14, 13, 3, 28, and 26%, respectively, to PM2.5. However, the relative contributions of these identified sources significantly vary with changing seasons. The results of trajectory clustering and the PSCF method demonstrated that regional sources could be crucial contributors to PM pollution in Beijing. In conclusion, we have unraveled some complex aspects of the pollution sources and formation processes of PM2.5 in Beijing. To our knowledge, this is the first systematic study that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

1,063 citations