scispace - formally typeset
Search or ask a question
Author

Yongxin Tong

Bio: Yongxin Tong is an academic researcher from Beihang University. The author has contributed to research in topics: Crowdsourcing & Computer science. The author has an hindex of 31, co-authored 99 publications receiving 4721 citations. Previous affiliations of Yongxin Tong include Hong Kong University of Science and Technology & University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federatedLearning, and federated transfer learning, and provides a comprehensive survey of existing works on this subject.
Abstract: Today’s artificial intelligence still faces two major challenges. One is that, in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated-learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federated learning, and federated transfer learning. We provide definitions, architectures, and applications for the federated-learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allowing knowledge to be shared without compromising user privacy.

2,593 citations

Posted Content
TL;DR: This work proposes building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.
Abstract: Today's AI still faces two major challenges. One is that in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated learning framework, which includes horizontal federated learning, vertical federated learning and federated transfer learning. We provide definitions, architectures and applications for the federated learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.

1,317 citations

Proceedings ArticleDOI
13 Aug 2017
TL;DR: This work proposes LinUOTD, a unified linear regression model with more than 200 million dimensions of features, which outperforms popular non-linear models in accuracy and can shed insights upon other industrial large-scale spatio-temporal prediction problems.
Abstract: Taxi-calling apps are gaining increasing popularity for their efficiency in dispatching idle taxis to passengers in need. To precisely balance the supply and the demand of taxis, online taxicab platforms need to predict the Unit Original Taxi Demand (UOTD), which refers to the number of taxi-calling requirements submitted per unit time (e.g., every hour) and per unit region (e.g., each POI). Predicting UOTD is non-trivial for large-scale industrial online taxicab platforms because both accuracy and flexibility are essential. Complex non-linear models such as GBRT and deep learning are generally accurate, yet require labor-intensive model redesign after scenario changes (e.g., extra constraints due to new regulations). To accurately predict UOTD while remaining flexible to scenario changes, we propose LinUOTD, a unified linear regression model with more than 200 million dimensions of features. The simple model structure eliminates the need of repeated model redesign, while the high-dimensional features contribute to accurate UOTD prediction. We further design a series of optimization techniques for efficient model training and updating. Evaluations on two large-scale datasets from an industrial online taxicab platform verify that LinUOTD outperforms popular non-linear models in accuracy. We envision our experiences to adopt simple linear models with high-dimensional features in UOTD prediction as a pilot study and can shed insights upon other industrial large-scale spatio-temporal prediction problems.

273 citations

Proceedings ArticleDOI
16 May 2016
TL;DR: This paper identifies a more practical micro-task allocation problem, called the Global Online Micro-task Allocation in spatial crowdsourcing (GOMA) problem, and proposes a two-phase-based framework, based on which the TGOA algorithm with 1 over 4 -competitive ratio under the online random order model is presented.
Abstract: With the rapid development of smartphones, spatial crowdsourcing platforms are getting popular. A foundational research of spatial crowdsourcing is to allocate micro-tasks to suitable crowd workers. Most existing studies focus on offline scenarios, where all the spatiotemporal information of micro-tasks and crowd workers is given. However, they are impractical since micro-tasks and crowd workers in real applications appear dynamically and their spatiotemporal information cannot be known in advance. In this paper, to address the shortcomings of existing offline approaches, we first identify a more practical micro-task allocation problem, called the Global Online Micro-task Allocation in spatial crowdsourcing (GOMA) problem. We first extend the state-of-art algorithm for the online maximum weighted bipartite matching problem to the GOMA problem as the baseline algorithm. Although the baseline algorithm provides theoretical guarantee for the worst case, its average performance in practice is not good enough since the worst case happens with a very low probability in real world. Thus, we consider the average performance of online algorithms, a.k.a online random order model.We propose a two-phase-based framework, based on which we present the TGOA algorithm with 1 over 4 -competitive ratio under the online random order model. To improve its efficiency, we further design the TGOA-Greedy algorithm following the framework, which runs faster than the TGOA algorithm but has lower competitive ratio of 1 over 8. Finally, we verify the effectiveness and efficiency of the proposed methods through extensive experiments on real and synthetic datasets.

271 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: A comprehensive and systematic review of existing research on four core algorithmic issues in spatial crowdsourcing: (1) task assignment, (2) quality control, (3) incentive mechanism design, and (4) privacy protection.
Abstract: Crowdsourcing is a computing paradigm where humans are actively involved in a computing task, especially for tasks that are intrinsically easier for humans than for computers. Spatial crowdsourcing is an increasing popular category of crowdsourcing in the era of mobile Internet and sharing economy, where tasks are spatiotemporal and must be completed at a specific location and time. In fact, spatial crowdsourcing has stimulated a series of recent industrial successes including sharing economy for urban services (Uber and Gigwalk) and spatiotemporal data collection (OpenStreetMap and Waze). This survey dives deep into the challenges and techniques brought by the unique characteristics of spatial crowdsourcing. Particularly, we identify four core algorithmic issues in spatial crowdsourcing: (1) task assignment, (2) quality control, (3) incentive mechanism design, and (4) privacy protection. We conduct a comprehensive and systematic review of existing research on the aforementioned four issues. We also analyze representative spatial crowdsourcing applications and explain how they are enabled by these four technical issues. Finally, we discuss open questions that need to be addressed for future spatial crowdsourcing research and applications.

185 citations


Cited by
More filters
Posted Content
TL;DR: Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
Abstract: Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

1,107 citations

01 Dec 1971

979 citations

Journal ArticleDOI
TL;DR: The concept of federated learning (FL) as mentioned in this paperederated learning has been proposed to enable collaborative training of an ML model and also enable DL for mobile edge network optimization in large-scale and complex mobile edge networks, where heterogeneous devices with varying constraints are involved.
Abstract: In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloud-based Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.

895 citations

Posted Content
TL;DR: LEAF is proposed, a modular benchmarking framework for learning in federated settings that includes a suite of open-source federated datasets, a rigorous evaluation framework, and a set of reference implementations, all geared towards capturing the obstacles and intricacies of practical federated environments.
Abstract: Modern federated networks, such as those comprised of wearable devices, mobile phones, or autonomous vehicles, generate massive amounts of data each day. This wealth of data can help to learn models that can improve the user experience on each device. However, the scale and heterogeneity of federated data presents new challenges in research areas such as federated learning, meta-learning, and multi-task learning. As the machine learning community begins to tackle these challenges, we are at a critical time to ensure that developments made in these areas are grounded with realistic benchmarks. To this end, we propose LEAF, a modular benchmarking framework for learning in federated settings. LEAF includes a suite of open-source federated datasets, a rigorous evaluation framework, and a set of reference implementations, all geared towards capturing the obstacles and intricacies of practical federated environments.

766 citations

Posted Content
TL;DR: In a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved, this raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale.
Abstract: In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL

701 citations