scispace - formally typeset
Search or ask a question
Author

Yoshiaki Kikkawa

Bio: Yoshiaki Kikkawa is an academic researcher from Institute of Medical Science. The author has contributed to research in topics: Hearing loss & Allele. The author has an hindex of 23, co-authored 67 publications receiving 1619 citations. Previous affiliations of Yoshiaki Kikkawa include Niigata University & Tokyo University of Agriculture.


Papers
More filters
Journal ArticleDOI
TL;DR: The previously suggested sans-harmonin interaction is established and it is found that sans also binds to myosin VIIa, and the first PDZ domain (PDZ1) of harmonin plays a central role in this network.
Abstract: Defects in myosin VIIa, harmonin (a PDZ domain protein), cadherin 23, protocadherin 15 and sans (a putative scaffolding protein), underlie five forms of Usher syndrome type I (USH1). Mouse mutants for all these proteins exhibit disorganization of their hair bundle, which is the mechanotransduction receptive structure of the inner ear sensory cells, the cochlear and vestibular hair cells. We have previously demonstrated that harmonin interacts with cadherin 23 and myosin VIIa. Here we address the extent of interactions between the five known USH1 proteins. We establish the previously suggested sans-harmonin interaction and find that sans also binds to myosin VIIa. We show that sans can form homomeric structures and that harmonin b can interact with all harmonin isoforms. We reveal that harmonin also binds to protocadherin 15. Molecular characterization of these interactions indicates that through its binding to four of the five USH1 proteins, the first PDZ domain (PDZ1) of harmonin plays a central role in this network. We localize sans in the apical region of cochlear and vestibular hair cell bodies underneath the cuticular plate. In contrast to the other four known USH1 proteins, no sans labeling was detected within the stereocilia. We propose that via its binding to myosin VIIa and/or harmonin, sans controls the hair bundle cohesion and proper development by regulating the traffic of USH1 proteins en route to the stereocilia.

246 citations

Journal ArticleDOI
TL;DR: The results suggested that the extant breeds of domestic dogs have maintained a large degree of mtDNA polymorphisms introduced from their ancestral wolf populations, and that extensive interbreedings had occurred among multiple matriarchal origins.
Abstract: To test the hypothesis that the domestic dogs are derived from several different ancestral gray wolf populations, we compared the sequence of the displacement (D)-loop region of the mitochondrial DNA (mtDNA) from 24 breeds of domestic dog (34 individual dogs) and 3 subspecies of gray wolf (Canis lupus lupus, C.l. pallipes and C.l. chanco; 19 individuals). The intraspecific sequence variations within domestic dogs (0.00-3.19%) and within wolves (0.00-2.88%) were comparable to the interspecific variations between domestic dogs and wolves (0.30-3.35%). A repetitive sequence with repeat units (TACACGTA/GCG) that causes the size variation in the D-loop region was also found in both dogs and wolves. However, no nucleotide substitutions or repetitive arrays were specific for domestic dogs or for wolves. These results showed that there is a close genetic relationship between dogs and wolves. Two major clades appeared in the phylogenetic trees constructed by neighbor-joining and by the maximum parsimony method; one clade containing Chinese wolf (C.l. chanco) showed extensive variations while the other showed only slight variation. This showed that there were two major genetic components both in domestic dogs and in wolves. However, neither clades nor haplotypes specific for any dog breed were observed, whereas subspecies-specific clades were found in Asiatic wolves. These results suggested that the extant breeds of domestic dogs have maintained a large degree of mtDNA polymorphisms introduced from their ancestral wolf populations, and that extensive interbreedings had occurred among multiple matriarchal origins.

105 citations

Journal ArticleDOI
TL;DR: Generation of a full set of mouse consomic strains in which each chromosome of the common laboratory strain C57BL/6J (B6) is replaced by its counterpart from the inbred strain MSM/Ms, which is derived from Japanese wild mouse, Mus musculus molossinus, suggests that the inter-subspecific consomic strain will be very useful for identification of latent genetic components underlying quantitative complex traits.
Abstract: Consomic strains, also known as chromosome substitution strains, are powerful tools for assigning polygenes that control quantitative complex traits to specific chromosomes. Here, we report generation of a full set of mouse consomic strains, in which each chromosome of the common laboratory strain C57BL/6J (B6) is replaced by its counterpart from the inbred strain MSM/Ms, which is derived from Japanese wild mouse, Mus musculus molossinus. The genome sequence of MSM/Ms is divergent from that of B6, whose genome is predominantly derived from Western European wild mouse, Mus musculus domesticus. MSM/Ms exhibits a number of quantitative complex traits markedly different from those of B6. We systematically determined phenotypes of these inter-subspecific consomic strains, focusing on complex traits related to reproduction, growth, and energy metabolism. We successfully detected more than 200 statistically significant QTLs affecting 26 traits. Furthermore, phenotyping of the consomic strains revealed that the measured values for quantitative complex traits often far exceed the range between B6 host and MSM/Ms donor strains; this may result from segregation of alleles or nonadditive interactions among multiple genes derived from the two mouse subspecies (that is, epistasis). Taken together, the results suggest that the inter-subspecific consomic strains will be very useful for identification of latent genetic components underlying quantitative complex traits.

88 citations

Journal ArticleDOI
TL;DR: Mapping of an AHL locus using a panel of consomic mice between C57BL/6J (B6) and MSM strains, which covered more than a half of chromosome sets, shows a novel AHL-resistant locus, designated as Ahl3, on the chromosome 17.

75 citations

Journal ArticleDOI
TL;DR: Investigation of the function of whirlin and its putative interacting partner, myosin XVa, in the stereocilium using relevant mice mutants indicates thatWhirlin expression is a critical and dynamic organizer for stereocilia elongation and actin polymerization.
Abstract: Little is known of the molecular processes that lead to the growth of stereocilia on the surface of hair cells in the inner ear. The PDZ protein whirlin is known, by virtue of the whirler mutation, to be involved in the process of stereocilia elongation and actin polymerization in the sensory hair cells of mammals. We have investigated the function of whirlin and its putative interacting partner, myosin XVa, in the stereocilium using relevant mice mutants. We raised an antibody that detects the short isoform of the whirlin protein which has been demonstrated to rescue the stereocilia growth defect in the whirler mutant. We show that whirlin localizes at the tips of stereocilia. Expression of whirlin is dynamic during stereocilia growth, demonstrating an ordered appearance and fade-out across the stereocilia rows and revealing a novel molecular gradation of process traversing the stereocilia bundle. Fade-out of whirlin in inner hair cells precedes that of outer hair cells, consistent with the earlier maturation of inner hair cell stereocilia. In myosin XVa mutants in which stereocilia are shortened, whirlin expression in the stereocilia tips is stalled and fade-out is accelerated. In whirlin mutants, myosin XVa is still expressed in stereocilia, but its appearance at the stereocilia tip is delayed. The data indicate that whirlin expression is a critical and dynamic organizer for stereocilia elongation and actin polymerization.

73 citations


Cited by
More filters
01 Jan 2010
TL;DR: The proofs of your article above are available for your review and can be downloaded using the file located at this URL address: http://rapidproof.cadmus.com/RapidProof/retrieval/index.jsp.
Abstract: IOVS MS 11-7777 (Article 2207) Proofs Available _______________________ Dear Author: The proofs of your article above are available for your review. Please download the file located at this URLaddress: http://rapidproof.cadmus.com/RapidProof/retrieval/index.jsp Login: [your e-mail address]Password: 99S4UntgTcU9 You will need to have Adobe Acrobat Reader software to read this file. This is free software and is availablefor user downloading at http://www.adobe.com/products/acrobat/readstep.html. If you experience technical problems, please contact Tracey Ritchey(e-mail: ritcheyt@cadmus.com; phone: 717-721-2646) This file contains: -- Instructions to Author-- Adobe Acrobat Comments and Notes Instructions-- Publication Fees and Reprint Order Form-- Page Proofs for your article, table of contents precis blurb, and author queries - containing 5 pages Please insert your comments electronically (instructions enclosed), or print the PDF proofs and add yourcomments manually. Follow the enclosed instructions for emailing, faxing, or mailing your corrections.Return all materials within 48 hours (two business days) to assure quick publication of your article. NOTE: Effective with the January 2010 issue IOVS will be available online only. No printed issues will beproduced. Printed reprints may still be ordered using the file provided. If you have any questions regarding your article, please contact me. ALWAYS INCLUDE YOURARTICLE NO. (IOVS MS 11-7777) WITH ALL CORRESPONDENCE. Cathy FreyTel: 717-721-2616Fax: 717-738-9479 or 717-738-9478freyc@cadmus.com

1,575 citations

Journal ArticleDOI
TL;DR: In non-neuronal cells, coexpression of human NgR1, p75 and LINGO-1 conferred responsiveness to oligodendrocyte myelin glycoprotein, as measured by RhoA activation, which suggests that Lingo-1 has an important role in CNS biology.
Abstract: Axon regeneration in the adult CNS is prevented by inhibitors in myelin. These inhibitors seem to modulate RhoA activity by binding to a receptor complex comprising a ligand-binding subunit (the Nogo-66 receptor NgR1) and a signal transducing subunit (the neurotrophin receptor p75). However, in reconstituted non-neuronal systems, NgR1 and p75 together are unable to activate RhoA, suggesting that additional components of the receptor may exist. Here we describe LINGO-1, a nervous system-specific transmembrane protein that binds NgR1 and p75 and that is an additional functional component of the NgR1/p75 signaling complex. In non-neuronal cells, coexpression of human NgR1, p75 and LINGO-1 conferred responsiveness to oligodendrocyte myelin glycoprotein, as measured by RhoA activation. A dominant-negative human LINGO-1 construct attenuated myelin inhibition in transfected primary neuronal cultures. This effect on neurons was mimicked using an exogenously added human LINGO-1-Fc fusion protein. Together these observations suggest that LINGO-1 has an important role in CNS biology.

836 citations

Journal ArticleDOI
TL;DR: Current understanding of how 'preconditioning' stimuli trigger a cerebroprotective state known as cerebral 'ischaemic tolerance' is summarized.
Abstract: Adaptation is one of physiology's fundamental tenets, operating not only at the level of species, as Darwin proposed, but also at the level of tissues, cells, molecules and, perhaps, genes. During recent years, stroke neurobiologists have advanced a considerable body of evidence supporting the hypothesis that, with experimental coaxing, the mammalian brain can adapt to injurious insults such as cerebral ischaemia to promote cell survival in the face of subsequent injury. Establishing this protective phenotype in response to stress depends on a coordinated response at the genomic, molecular, cellular and tissue levels. Here, I summarize our current understanding of how 'preconditioning' stimuli trigger a cerebroprotective state known as cerebral 'ischaemic tolerance'.

719 citations

Journal ArticleDOI
TL;DR: A genome-wide, high-resolution map of the phylogenetic origin of the genome of most extant laboratory mouse inbred strains is provided, based on the genotypes of wild-caught mice from three subspecies of Mus musculus.
Abstract: Here we provide a genome-wide, high-resolution map of the phylogenetic origin of the genome of most extant laboratory mouse inbred strains. Our analysis is based on the genotypes of wild-caught mice from three subspecies of Mus musculus. We show that classical laboratory strains are derived from a few fancy mice with limited haplotype diversity. Their genomes are overwhelmingly Mus musculus domesticus in origin, and the remainder is mostly of Japanese origin. We generated genome-wide haplotype maps based on identity by descent from fancy mice and show that classical inbred strains have limited and non-randomly distributed genetic diversity. In contrast, wild-derived laboratory strains represent a broad sampling of diversity within M. musculus. Intersubspecific introgression is pervasive in these strains, and contamination by laboratory stocks has played a role in this process. The subspecific origin, haplotype diversity and identity by descent maps can be visualized using the Mouse Phylogeny Viewer (see URLs).

449 citations

Journal ArticleDOI
01 Nov 2013-Cytokine
TL;DR: The proximal adaptor Act1 is a common mediator during the signaling of all IL-17 cytokines so far and is thus involved inIL-17 mediated host defense and IL- 17-driven autoimmune conditions.

441 citations