scispace - formally typeset
Search or ask a question
Author

Yoshiaki Tamura

Other affiliations: University of Tokyo
Bio: Yoshiaki Tamura is an academic researcher from Toyo University. The author has contributed to research in topics: Bubble & Sarcopenia. The author has an hindex of 29, co-authored 111 publications receiving 5034 citations. Previous affiliations of Yoshiaki Tamura include University of Tokyo.
Topics: Bubble, Sarcopenia, Insulin, Medicine, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.

668 citations

Journal ArticleDOI
TL;DR: It is demonstrated that LXR-RXR can modify the expression of genes for lipogenic enzymes by regulating SREBP-1c expression, providing a novel link between fatty acid and cholesterol metabolism.
Abstract: In an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXRa) and LXRb as strong activators of the mouse SREBP-1c promoter. In the transfection studies, expression of either LXRa or -b activated the SREBP-1c promoter-luciferase gene in a dose-dependent manner. Deletion and mutation studies, as well as gel mobility shift assays, located an LXR response element complex consisting of two new LXR-binding motifs which showed high similarity to an LXR response element recently found in the ABC1 gene promoter, a reverse cholesterol transporter. Addition of an LXR ligand, 22(R)-hydroxycholesterol, increased the promoter activity. Coexpression of retinoid X receptor (RXR), a heterodimeric partner, and its ligand 9-cis-retinoic acid also synergistically activated the SREBP-1c promoter. In HepG2 cells, SREBP-1c mRNA and precursor protein levels were induced by treatment with 22(R)-hydroxycholesterol and 9-cis-retinoic acid, confirming that endogenous LXR-RXR activation can induce endogenous SREBP-1c expression. The activation of SREBP-1c by LXR is associated with a slight increase in nuclear SREBP-1c, resulting in activation of the gene for fatty acid synthase, one of its downstream genes, as measured by the luciferase assay. These data demonstrate that LXR-RXR can modify the expression of genes for lipogenic enzymes by regulating SREBP-1c expression, providing a novel link between fatty acid and cholesterol metabolism.

527 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the suppressive effect of PUFA on lipogenic enzyme genes in the liver is caused by a decrease in the mature form of SREBP-1 protein, which is presumably due to the reduced cleavage of SRAB-1 precursor protein.

359 citations

Journal ArticleDOI
TL;DR: SREBP-1 regulation of lipogenesis is highly involved in the development of fatty livers but does not seem to be a determinant of obesity in Lep ob /Lep ob mice.

359 citations

Journal ArticleDOI
TL;DR: PPARalpha activation can suppress LXR-SREBP-1c pathway through reduction of LXR/RXR formation, proposing a novel transcription factor cross-talk between LXR and PPARalpha in hepatic lipid homeostasis.
Abstract: Liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) are members of nuclear receptors that form obligate heterodimers with retinoid X receptors (RXRs) These nuclear receptors play crucial roles in the regulation of fatty acid metabolism: LXRs activate expression of sterol regulatory element-binding protein 1c (SREBP-1c), a dominant lipogenic gene regulator, whereas PPARalpha promotes fatty acid beta-oxidation genes In the current study, effects of PPARs on the LXR-SREBP-1c pathway were investigated Luciferase assays in human embryonic kidney 293 cells showed that overexpression of PPARalpha and gamma dose-dependently inhibited SREBP-1c promoter activity induced by LXR Deletion and mutation studies demonstrated that the two LXR response elements (LXREs) in the SREBP-1c promoter region are responsible for this inhibitory effect of PPARs Gel shift assays indicated that PPARs reduce binding of LXR/RXR to LXRE PPARalpha-selective agonist enhanced these inhibitory effects Supplementation with RXR attenuated these inhibitions by PPARs in luciferase and gel shift assays, implicating receptor interaction among LXR, PPAR, and RXR as a plausible mechanism Competition of PPARalpha ligand with LXR ligand was observed in LXR/RXR binding to LXRE in gel shift assay, in LXR/RXR formation in nuclear extracts by coimmunoprecipitation, and in gene expression of SREBP-1c by Northern blot analysis of rat primary hepatocytes and mouse liver RNA These data suggest that PPARalpha activation can suppress LXR-SREBP-1c pathway through reduction of LXR/RXR formation, proposing a novel transcription factor cross-talk between LXR and PPARalpha in hepatic lipid homeostasis

281 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The complex, interdigitated roles of these three SREBPs have been dissected through the study of ten different lines of gene-manipulated mice and form the subject of this review.
Abstract: Lipid homeostasis in vertebrate cells is regulated by a family of membrane-bound transcription factors designated sterol regulatory element–binding proteins (SREBPs). SREBPs directly activate the expression of more than 30 genes dedicated to the synthesis and uptake of cholesterol, fatty acids, triglycerides, and phospholipids, as well as the NADPH cofactor required to synthesize these molecules (1–4). In the liver, three SREBPs regulate the production of lipids for export into the plasma as lipoproteins and into the bile as micelles. The complex, interdigitated roles of these three SREBPs have been dissected through the study of ten different lines of gene-manipulated mice. These studies form the subject of this review.

4,406 citations

Journal ArticleDOI
23 Feb 2001-Cell
TL;DR: Elevated levels of serum cholesterol are probably unique through the hepatic LDL receptor pathway, as evi-in being sufficient to drive the development of athero-denced by the fact that lack of functional LDL receptors sclerosis in humans and experimental animals, even in is responsible for the massive accumulation of LDL in the absence of other known risk factors.

2,995 citations

Journal ArticleDOI
20 May 2009-JAMA
TL;DR: In this article, a systematic literature search was conducted for observational cohort studies using MEDLINE (1966 to December 31, 2008) and EMBASE (1980 to December 30, 2008), which reported associations of baseline cardiorespiratory fitness with CHD events, CVD events, or all-cause mortality in healthy participants.
Abstract: Context Epidemiological studies have indicated an inverse association between cardiorespiratory fitness (CRF) and coronary heart disease (CHD) or all-cause mortality in healthy participants. Objective To define quantitative relationships between CRF and CHD events, cardiovascular disease (CVD) events, or all-cause mortality in healthy men and women. Data Sources and Study Selection A systematic literature search was conducted for observational cohort studies using MEDLINE (1966 to December 31, 2008) and EMBASE (1980 to December 31, 2008). The Medical Subject Headings search terms used included exercise tolerance, exercise test, exercise/physiology, physical fitness, oxygen consumption, cardiovascular diseases, myocardial ischemia, mortality, mortalities, death, fatality, fatal, incidence, or morbidity. Studies reporting associations of baseline CRF with CHD events, CVD events, or all-cause mortality in healthy participants were included. Data Extraction Two authors independently extracted relevant data. CRF was estimated as maximal aerobic capacity (MAC) expressed in metabolic equivalent (MET) units. Participants were categorized as low CRF ( Data Synthesis Data were obtained from 33 eligible studies (all-cause mortality, 102 980 participants and 6910 cases; CHD/CVD, 84 323 participants and 4485 cases). Pooled RRs of all-cause mortality and CHD/CVD events per 1-MET higher level of MAC (corresponding to 1-km/h higher running/jogging speed) were 0.87 (95% confidence interval [CI], 0.84-0.90) and 0.85 (95% CI, 0.82-0.88), respectively. Compared with participants with high CRF, those with low CRF had an RR for all-cause mortality of 1.70 (95% CI, 1.51-1.92; P Conclusions Better CRF was associated with lower risk of all-cause mortality and CHD/CVD. Participants with a MAC of 7.9 METs or more had substantially lower rates of all-cause mortality and CHD/CVD events compared with those with a MAC of less 7.9 METs.

2,464 citations

Journal ArticleDOI
TL;DR: FASN, a nearly-universal druggable target in many human carcinomas and their precursor lesions, offers new therapeutic opportunities for metabolically treating and preventing cancer.
Abstract: Fatty acid synthase (FASN) catalyses the synthesis of fatty acids, and this synthetic pathway is upregulated in many tumours. How might FASN and increased lipogenesis be involved in cancer, and is FASN a valid therapeutic target? There is a renewed interest in the ultimate role of fatty acid synthase (FASN) — a key lipogenic enzyme catalysing the terminal steps in the de novo biogenesis of fatty acids — in cancer pathogenesis. Tumour-associated FASN, by conferring growth and survival advantages rather than functioning as an anabolic energy-storage pathway, appears to necessarily accompany the natural history of most human cancers. A recent identification of cross-talk between FASN and well-established cancer-controlling networks begins to delineate the oncogenic nature of FASN-driven lipogenesis. FASN, a nearly-universal druggable target in many human carcinomas and their precursor lesions, offers new therapeutic opportunities for metabolically treating and preventing cancer.

2,341 citations