scispace - formally typeset
Search or ask a question
Author

Yoshiki Yamaguchi

Bio: Yoshiki Yamaguchi is an academic researcher from Tohoku Pharmaceutical University. The author has contributed to research in topics: Glycan & Glycosylation. The author has an hindex of 41, co-authored 247 publications receiving 6186 citations. Previous affiliations of Yoshiki Yamaguchi include University of Tokyo & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: Structural insight into the mechanisms of affinity enhancement suggest that the glycoform-dependent ADCC enhancement is attributed to a subtle conformational alteration in a limited region of IgG1-Fc.

267 citations

Journal ArticleDOI
TL;DR: The findings suggest that the Arg 42 mutation induces a conformational change in the Rpn10‐binding site of Ubl, resulting in impaired proteasomal binding of parkin, which could be the cause of AR‐JP.
Abstract: Parkin, a product of the causative gene of autosomal-recessive juvenile parkinsonism (AR-JP), is a RING-type E3 ubiquitin ligase and has an amino-terminal ubiquitin-like (Ubl) domain. Although a single mutation that causes an Arg to Pro substitution at position 42 of the Ubl domain (the Arg 42 mutation) has been identified in AR-JP patients, the function of this domain is not clear. In this study, we determined the three-dimensional structure of the Ubl domain of parkin by NMR, in particular by extensive use of backbone 15N-1H residual dipolar-coupling data. Inspection of chemical-shift-perturbation data showed that the parkin Ubl domain binds the Rpn10 subunit of 26S proteasomes via the region of parkin that includes position 42. Our findings suggest that the Arg 42 mutation induces a conformational change in the Rpn10-binding site of Ubl, resulting in impaired proteasomal binding of parkin, which could be the cause of AR-JP.

258 citations

Journal ArticleDOI
TL;DR: Results indicate that the carbohydrate moieties are required for maintaining the structural integrity of the FcgammaR-binding site.

192 citations

Journal ArticleDOI
TL;DR: The encapsulation of a small protein, ubiquitin, within giant coordination cages self-assembled around the protein-encapsulated structure could be analysed by NMR spectroscopy, ultracentrifugation and X-ray crystallography.
Abstract: Protein encapsulation has long attracted many chemists and biologists because of its potential to control the structure and functions of proteins, but has been a daunting challenge because of their incommensurably larger size compared with common synthetic hosts. Here we report the encapsulation of a small protein, ubiquitin, within giant coordination cages. The protein was attached to one bidentate ligand and, upon addition of Pd(II) ions (M) and additional ligands (L), M(12)L(24) coordination nanocages self-assembled around the protein. Because of the well-defined host framework, the protein-encapsulated structure could be analysed by NMR spectroscopy, ultracentrifugation and X-ray crystallography.

183 citations

Journal ArticleDOI
TL;DR: It is shown that enzyme activities of three major α-dystroglycanopathy-causing proteins are involved in the synthesis of tandem Rbo5P, a phosphoric ester of pentose alcohol in α-DG.

164 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment ofAKI.
Abstract: tion’, implying that most patients ‘should’ receive a particular action. In contrast, level 2 guidelines are essentially ‘suggestions’ and are deemed to be ‘weak’ or discretionary, recognising that management decisions may vary in different clinical contexts. Each recommendation was further graded from A to D by the quality of evidence underpinning them, with grade A referring to a high quality of evidence whilst grade D recognised a ‘very low’ evidence base. The overall strength and quality of the supporting evidence is summarised in table 1 . The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment of AKI. The full summary of clinical practice statements is available at www.kdigo.org, but a few key recommendation statements will be highlighted here.

6,247 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: Recent studies addressing the multifaceted roles of FcRs for IgG (FcγRs) in the immune system are discussed and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases are discussed.
Abstract: In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcgammaRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases.

2,390 citations

Journal ArticleDOI
TL;DR: In the early 1960s, the discovery of crown ethers and spherands by Pedersen, Lehn, and Cram3 led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, hydrophilic and hydrophobic interactions to achieve these highly complex and often symmetrical architectures as mentioned in this paper.
Abstract: Fascination with supramolecular chemistry over the last few decades has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nanoscopic dimensions Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries both inside and between the fields of chemistry, physics, and biology This chemistry is of continuing interest for synthetic chemists; partly because of the fascinating physical and chemical properties and the complex and varied aesthetically pleasing structures that supramolecules possess For scientists seeking to design novel molecular materials exhibiting unusual sensing, magnetic, optical, and catalytic properties, and for researchers investigating the structure and function of biomolecules, supramolecular chemistry provides limitless possibilities Thus, it transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field In the early 1960s, the discovery of ‘crown ethers’, ‘cryptands’ and ‘spherands’ by Pedersen,1 Lehn,2 and Cram3 respectively, led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, etc Such ‘programmed’ molecules can thus be self-assembled by utilizing these interactions in a definite algorithm to form large supramolecules that have different physicochemical properties than those of the precursor building blocks Typical systems are designed such that the self-assembly process is kinetically reversible; the individual building blocks gradually funnel towards an ensemble that represents the thermodynamic minimum of the system via numerous association and dissociation steps By tuning various reaction parameters, the reaction equilibrium can be shifted towards the desired product As such, self-assembly has a distinct advantage over traditional, stepwise synthetic approaches when accessing large molecules It is well known that nature has the ability to assemble relatively simple molecular precursors into extremely complex biomolecules, which are vital for life processes Nature’s building blocks possess specific functionalities in configurations that allow them to interact with one another in a deliberate manner Protein folding, nucleic acid assembly and tertiary structure, phospholipid membranes, ribosomes, microtubules, etc are but a selective, representative example of self-assembly in nature that is of critical importance for living organisms Nature makes use of a variety of weak, non-covalent interactions such as hydrogen–bonding, charge–charge, donor–acceptor, π-π, van der Waals, hydrophilic and hydrophobic, etc interactions to achieve these highly complex and often symmetrical architectures In fact, the existence of life is heavily dependent on these phenomena The aforementioned structures provide inspiration for chemists seeking to exploit the ‘weak interactions’ described above to make scaffolds rivaling the complexity of natural systems The breadth of supramolecular chemistry has progressively increased with the synthesis of numerous unique supramolecules each year Based on the interactions used in the assembly process, supramolecular chemistry can be broadly classified in to three main branches: i) those that utilize H-bonding motifs in the supramolecular architectures, ii) processes that primarily use other non-covalent interactions such as ion-ion, ion-dipole, π–π stacking, cation-π, van der Waals and hydrophobic interactions, and iii) those that employ strong and directional metal-ligand bonds for the assembly process However, as the scale and degree of complexity of desired molecules increases, the assembly of small molecular units into large, discrete supramolecules becomes an increasingly daunting task This has been due in large part to the inability to completely control the directionality of the weak forces employed in the first two classifications above Coordination-driven self-assembly, which defines the third approach, affords a greater control over the rational design of 2D and 3D architectures by capitalizing on the predictable nature of the metal-ligand coordination sphere and ligand lability to encode directionality Thus, this third strategy represents an alternative route to better execute the “bottom-up” synthetic strategy for designing molecules of desired dimensions, ranging from a few cubic angstroms to over a cubic nanometer For instance, a wide array of 2D systems: rhomboids, squares, rectangles, triangles, etc, and 3D systems: trigonal pyramids, trigonal prisms, cubes, cuboctahedra, double squares, adamantanoids, dodecahedra and a variety of other cages have been reported As in nature, inherent preferences for particular geometries and binding motifs are ‘encoded’ in certain molecules depending on the metals and functional groups present; these moieties help to control the way in which the building blocks assemble into well-defined, discrete supramolecules4 Since the early pioneering work by Lehn5 and Sauvage6 on the feasibility and usefulness of coordination-driven self-assembly in the formation of infinite helicates, grids, ladders, racks, knots, rings, catenanes, rotaxanes and related species,7 several groups - Stang,8 Raymond,9 Fujita,10 Mirkin,11 Cotton12 and others13,14 have independently developed and exploited novel coordination-based paradigms for the self-assembly of discrete metallacycles and metallacages with well-defined shapes and sizes In the last decade, the concepts and perspectives of coordination-driven self-assembly have been delineated and summarized in several insightful reviews covering various aspects of coordinationdriven self-assembly15 In the last decade, the use of this synthetic strategy has led to metallacages dubbed as “molecular flasks” by Fujita,16 and Raymond and Bergman,17 which due to their ability to encapsulate guest molecules, allowed for the observation of unique chemical phenomena and unusual reactions which cannot be achieved in the conventional gas, liquid or solid phases Furthermore, these assemblies found applications in supramolecular catalysis18,19 and as nanomaterials as developed by Hupp20 and others21,22 This review focuses on the journey of early coordination-driven self-assembly paradigms to more complex and discrete 2D and 3D supramolecular ensembles over the last decade We begin with a discussion of various approaches that have been developed by different groups to assemble finite supramolecular architectures The subsequent sections contain detailed discussions on the synthesis of discrete 2D and 3D systems, their functionalizations and applications

2,388 citations