scispace - formally typeset
Search or ask a question
Author

Yoshinori Hatanaka

Other affiliations: Wright State University
Bio: Yoshinori Hatanaka is an academic researcher from Shizuoka University. The author has contributed to research in topics: Thin film & Chemical vapor deposition. The author has an hindex of 28, co-authored 212 publications receiving 3779 citations. Previous affiliations of Yoshinori Hatanaka include Wright State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a ZnO diode was fabricated by using a laser-doping technique to form a p-type zinc-phosphide layer on an n-type znO substrate.
Abstract: A ZnO diode was fabricated by using a laser-doping technique to form a p-type ZnO layer on an n-type ZnO substrate. A zinc-phosphide compound, used as a phosphorous source, was deposited on the ZnO wafer and subjected to excimer-laser pulses. The current–voltage characteristics showed a diode characteristic between the phosphorous-doped p-layer and the n-type substrate. Moreover, light emission, with a band-edge component, was observed by forward current injection at 110 K.

709 citations

Journal ArticleDOI
TL;DR: In this article, an attention was paid on the sputtering pressure of Ar during the film deposition, and it has been found that electrical conductivity, gas sensitivity and rising response time of the thin film depends on Sputtering pressure during the deposition process.

255 citations

Journal ArticleDOI
TL;DR: In this paper, gallium oxide thin films have promising properties for high-temperature-stable and n-type semiconducting properties at high temperatures above 600°C, and they have been used for detecting reducing gases as surface control-type sensors in the temperature range of 500°-850°C.

198 citations

Journal ArticleDOI
TL;DR: In this paper, the dependence of the structural, photoluminescent and cathodolumininescent properties of ZnO thin films deposited by electron beam evaporation on the preparation conditions has been investigated.

161 citations

Journal ArticleDOI
TL;DR: In this article, a p-type ZnO layer was fabricated by excimer laser doping technique using thermally oxidized ZnNO films, which were formed by thermal oxidation of epitaxial ZnSe films on Si(111) substrate grown by remote plasma enhanced metal-organic chemical vapor deposition.
Abstract: A p-type ZnO layer was fabricated by excimer laser doping technique using thermally oxidized ZnO films. Epitaxial ZnO(0001) films were formed by thermal oxidation of epitaxial ZnSe films on Si(111) substrate grown by remote plasma enhanced metal-organic chemical vapor deposition. The p-type ZnO was fabricated by excimer laser irradiation with Sb as a dopant source. A good Ohmic contact was obtained between Sb doped ZnO layer and gold metal electrodes. The Sb doped ZnO layer showed positive Hall coefficient, the resistivity was 8 × 10 -3 Ω cm with a hole mobility of 1.5 cm 2 /Vs and an acceptor concentration of 5 x 10 20 cm -3 as p-type, respectively.

134 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations

Journal ArticleDOI
TL;DR: Wurtzitic ZnO is a widebandgap semiconductor which has many applications, such as piezoelectric transducers, varistors, phosphors, and transparent conducting films as discussed by the authors.
Abstract: Wurtzitic ZnO is a wide-bandgap (3.437 eV at 2 K) semiconductor which has many applications, such as piezoelectric transducers, varistors, phosphors, and transparent conducting films. Most of these applications require only polycrystalline material; however, recent successes in producing large-area single crystals have opened up the possibility of producing blue and UV light emitters, and high-temperature, high-power transistors. The main advantages of ZnO as a light emitter are its large exciton binding energy (60 meV), and the existence of well-developed bulk and epitaxial growth processes; for electronic applications, its attractiveness lies in having high breakdown strength and high saturation velocity. Optical UV lasing, at both low and high temperatures, has already been demonstrated, although efficient electrical lasing must await the further development of good, p-type material. ZnO is also much more resistant to radiation damage than are other common semiconductor materials, such as Si, GaAs, CdS, and even GaN; thus, it should be useful for space applications.

2,573 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a new technique to fabricate p-type ZnO reproducibly, and showed high-quality undoped films with electron mobility exceeding that in the bulk.
Abstract: Since the successful demonstration of a blue light-emitting diode (LED)1, potential materials for making short-wavelength LEDs and diode lasers have been attracting increasing interest as the demands for display, illumination and information storage grow2,3,4. Zinc oxide has substantial advantages including large exciton binding energy, as demonstrated by efficient excitonic lasing on optical excitation5,6. Several groups have postulated the use of p-type ZnO doped with nitrogen, arsenic or phosphorus7,8,9,10, and even p–n junctions11,12,13. However, the choice of dopant and growth technique remains controversial and the reliability of p-type ZnO is still under debate14. If ZnO is ever to produce long-lasting and robust devices, the quality of epitaxial layers has to be improved as has been the protocol in other compound semiconductors15. Here we report high-quality undoped films with electron mobility exceeding that in the bulk. We have used a new technique to fabricate p-type ZnO reproducibly. Violet electroluminescence from homostructural p–i–n junctions is demonstrated at room-temperature.

1,964 citations