scispace - formally typeset
Search or ask a question
Author

Yoshinori Tanaka

Bio: Yoshinori Tanaka is an academic researcher from Kyoto University. The author has contributed to research in topics: Photonic crystal & Photonics. The author has an hindex of 31, co-authored 92 publications receiving 3364 citations.


Papers
More filters
Journal ArticleDOI
27 May 2005-Science
TL;DR: This work demonstrates both the “inhibition” and “redistribution” of spontaneous light emission by using two-dimensional photonic crystals, in which the refractive index is changed two-dimensionally.
Abstract: Inhibiting spontaneous light emission and redistributing the energy into useful forms are desirable objectives for advances in various fields, including photonics, illuminations, displays, solar cells, and even quantum-information systems. We demonstrate both the "inhibition" and "redistribution" of spontaneous light emission by using two-dimensional (2D) photonic crystals, in which the refractive index is changed two-dimensionally. The overall spontaneous emission rate is found to be reduced by a factor of 5 as a result of the 2D photonic bandgap effect. Simultaneously, the light energy is redistributed from the 2D plane to the direction normal to the photonic crystal.

485 citations

Journal ArticleDOI
25 Jan 2008-Science
TL;DR: This work has developed a fabrication method, named “air holes retained over growth,” in order to construct a two-dimensional gallium nitride (GaN)/air photonic-crystal structure, which has aPhotonic-Crystal band-edge effect sufficient for the successful operation of a current-injection surface-emitting laser.
Abstract: Shorter-wavelength surface-emitting laser sources are important for a variety of fields, including photonics, information processing, and biology. We report on the creation of a current-driven blue-violet photonic-crystal surface-emitting laser. We have developed a fabrication method, named "air holes retained over growth," in order to construct a two-dimensional gallium nitride (GaN)/air photonic-crystal structure. The resulting periodic structure has a photonic-crystal band-edge effect sufficient for the successful operation of a current-injection surface-emitting laser. This represents an important step in the development of laser sources that could be focused to a size much less than the wavelength and be integrated two-dimensionally at such short wavelengths.

312 citations

Journal ArticleDOI
TL;DR: The first demonstration of dynamic control of the Q factor is presented, by constructing a system composed of a nanocavity, a waveguide with nonlinear optical response and a photonic-crystal hetero-interface mirror, which was successfully changed from approximately 3,000 to approximately 12,000 within picoseconds.
Abstract: High-quality (Q) factor photonic-crystal nanocavities are currently the focus of much interest because they can strongly confine photons in a tiny space. Nanocavities with ultrahigh Q factors of up to 2,000,000 and modal volumes of a cubic wavelength have been realized. If the Q factor could be dynamically controlled within the lifetime of a photon, significant advances would be expected in areas of physics and engineering such as the slowing and/or stopping of light and quantum-information processing. For these applications, the transfer, storage and exchange of photons in nanocavity systems on such a timescale are highly desirable. Here, we present the first demonstration of dynamic control of the Q factor, by constructing a system composed of a nanocavity, a waveguide with nonlinear optical response and a photonic-crystal hetero-interface mirror. The Q factor of the nanocavity was successfully changed from approximately 3,000 to approximately 12,000 within picoseconds.

260 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate strong coupling between distant nanocavities separated by more than 100 wavelengths as well as dynamic control over the coupling state, which can be stopped on demand by irradiating one of the nanocava with a control pulse, thus freezing the photon state.
Abstract: Scientists demonstrate strong coupling between distant nanocavities separated by more than 100 wavelengths as well as dynamic control over the coupling state. The strong coupling state can be stopped on demand by irradiating one of the nanocavities with a control pulse, thus freezing the photon state.

226 citations

Journal ArticleDOI
TL;DR: Comparing the experimental quality factor with the results of calculations shows that the authors have suppressed variations in the radii and positions of the air holes composing a nanocavity such that their standard deviations are less than 1 nm.
Abstract: We have succeeded in fabricating a photonic crystal nanocavity with a photon lifetime of 2.1 ns, which corresponds to a quality factor of 2.5×106. This lifetime is the longest recorded thus far in photonic crystal cavities, and was brought about by improvements in the fabrication process. Comparing our experimental quality factor with the results of calculations shows that we have suppressed variations in the radii and positions of the air holes composing a nanocavity such that their standard deviations are less than 1 nm.

198 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed.
Abstract: The electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed. Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

2,612 citations

Journal ArticleDOI
TL;DR: In this article, the time dependence of ρ11, ρ22 and ρ12 under steady-state conditions was analyzed under a light field interaction V = -μ12Ee iωt + c.c.
Abstract: (b) Write out the equations for the time dependence of ρ11, ρ22, ρ12 and ρ21 assuming that a light field interaction V = -μ12Ee iωt + c.c. couples only levels |1> and |2>, and that the excited levels exhibit spontaneous decay. (8 marks) (c) Under steady-state conditions, find the ratio of populations in states |2> and |3>. (3 marks) (d) Find the slowly varying amplitude ̃ ρ 12 of the polarization ρ12 = ̃ ρ 12e iωt . (6 marks) (e) In the limiting case that no decay is possible from intermediate level |3>, what is the ground state population ρ11(∞)? (2 marks) 2. (15 marks total) In a 2-level atom system subjected to a strong field, dressed states are created in the form |D1(n)> = sin θ |1,n> + cos θ |2,n-1> |D2(n)> = cos θ |1,n> sin θ |2,n-1>

1,872 citations

Journal ArticleDOI
TL;DR: In this article, the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering are reviewed, and practical issues related to real devices and their applications are also discussed.
Abstract: Slow light with a remarkably low group velocity is a promising solution for buffering and time-domain processing of optical signals. It also offers the possibility for spatial compression of optical energy and the enhancement of linear and nonlinear optical effects. Photonic-crystal devices are especially attractive for generating slow light, as they are compatible with on-chip integration and room-temperature operation, and can offer wide-bandwidth and dispersion-free propagation. Here the background theory, recent experimental demonstrations and progress towards tunable slow-light structures based on photonic-band engineering are reviewed. Practical issues related to real devices and their applications are also discussed. The unique properties of wide-bandwidth and dispersion-free propagation in photonic-crystal devices have made them a good candidate for slow-light generation. This article gives the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering.

1,797 citations

Journal ArticleDOI
TL;DR: Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away.
Abstract: Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work. The fascinating wave phenomenon of ‘bound states in the continuum’ spans different material and wave systems, including electron, electromagnetic and mechanical waves. In this Review, we focus on the common physical mechanisms underlying these bound states, whilst also discussing recent experimental realizations, current applications and future opportunities for research.

1,612 citations

Journal ArticleDOI
07 Jul 2016-Nature
TL;DR: Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.
Abstract: Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

1,367 citations