scispace - formally typeset
Search or ask a question
Author

Yoshio Hayasaki

Bio: Yoshio Hayasaki is an academic researcher from Utsunomiya University. The author has contributed to research in topics: Holography & Femtosecond. The author has an hindex of 27, co-authored 276 publications receiving 3163 citations. Previous affiliations of Yoshio Hayasaki include University of Tokushima & University of Tsukuba.


Papers
More filters
Journal ArticleDOI
TL;DR: Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer and emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
Abstract: Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.

835 citations

Journal ArticleDOI
TL;DR: In this paper, a femtosecond laser processing system capable of parallel, arbitrary, and variable patterning is proposed, which is achieved by introducing a spatial light modulator displaying a hologram into the system.
Abstract: We propose a holographic femtosecond laser processing system capable of parallel, arbitrary, and variable patterning. These features are achieved by introducing a spatial light modulator displaying a hologram into the femtosecond laser processing system. We demonstrate the variable parallel processing of a glass sample.

233 citations

Journal ArticleDOI
TL;DR: In this article, the diffraction peaks are made uniform by changing the center phase and size of each phase Fresnel lens while taking account of the intensity distribution of the irradiated laser pulse and the spatial frequency response of the SLM.
Abstract: Holographic femtosecond laser processing with multiplexed phase Fresnel lenses for high-speed parallel fabrication of microstructures is proposed. Use of a spatial light modulator (SLM) allows independent tunability of the diffraction peaks, three-dimensional parallelism, and arbitrary, variable features. The diffraction peaks are made uniform by changing the center phase and size of each phase Fresnel lens while taking account of the intensity distribution of the irradiated laser pulse and the spatial frequency response of the SLM.

140 citations

Journal ArticleDOI
TL;DR: It is found that phototropin perceives both blue light and temperature and uses this information to arrange the chloroplasts for optimal photosynthesis, indicating that photoreceptors may have the potential to function as thermoreceptors.
Abstract: Living organisms detect changes in temperature using thermosensory molecules. However, these molecules and/or their mechanisms for sensing temperature differ among organisms. To identify thermosensory molecules in plants, we investigated chloroplast positioning in response to temperature changes and identified a blue-light photoreceptor, phototropin, that is an essential regulator of chloroplast positioning. Based on the biochemical properties of phototropin during the cellular response to light and temperature changes, we found that phototropin perceives temperature based on the temperature-dependent lifetime of the photoactivated chromophore. Our findings indicate that phototropin perceives both blue light and temperature and uses this information to arrange the chloroplasts for optimal photosynthesis. Because the photoactivated chromophore of many photoreceptors has a temperature-dependent lifetime, a similar temperature-sensing mechanism likely exists in other organisms. Thus, photoreceptors may have the potential to function as thermoreceptors.

116 citations

Journal ArticleDOI
TL;DR: In this paper, a femtosecond laser is used for rendering aerial and volumetric graphics using femto-cond (FSL) laser sources, which can produce holograms using spatial light modulation technology and scanning of a laser beam by a galvano mirror.
Abstract: We present a method of rendering aerial and volumetric graphics using femtosecond lasers. A high-intensity laser excites physical matter to emit light at an arbitrary three-dimensional position. Popular applications can thus be explored, especially because plasma induced by a femtosecond laser is less harmful than that generated by a nanosecond laser. There are two methods of rendering graphics with a femtosecond laser in air: producing holograms using spatial light modulation technology and scanning of a laser beam by a galvano mirror. The holograms and workspace of the system proposed here occupy a volume of up to 1 cm3; however, this size is scalable depending on the optical devices and their setup. This article provides details of the principles, system setup, and experimental evaluation, and discusses the scalability, design space, and applications of this system. We tested two laser sources: an adjustable (30--100fs) laser that projects up to 1,000 pulses/s at an energy of up to 7mJ/pulse and a 269fs laser that projects up to 200,000 pulses/s at an energy of up to 50μJ/pulse. We confirmed that the spatiotemporal resolution of volumetric displays implemented using these laser sources is 4,000 and 200,000 dots/s, respectively. Although we focus on laser-induced plasma in air, the discussion presented here is also applicable to other rendering principles such as fluorescence and microbubbles in solid or liquid materials.

90 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: The fact that light carries both linear and angular momentum is well-known to physicists as discussed by the authors, and one application of the linear momentum of light is for optical tweezers, in which the refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam.
Abstract: The fact that light carries both linear and angular momentum is well-known to physicists. One application of the linear momentum of light is for optical tweezers, in which the refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam. The angular momentum of light can also be transfered to particles, causing them to spin. In fact, the angular momentum of light has two components that act through different mechanisms on various types of particle. This Review covers the creation of such beams and how their unusual intensity, polarization and phase structure has been put to use in the field of optical manipulation.

1,679 citations

Journal Article
TL;DR: In this article, a self-scanned 1024 element photodiode array and a minicomputer are used to measure the phase (wavefront) in the interference pattern of an interferometer to lambda/100.
Abstract: A self-scanned 1024 element photodiode array and minicomputer are used to measure the phase (wavefront) in the interference pattern of an interferometer to lambda/100. The photodiode array samples intensities over a 32 x 32 matrix in the interference pattern as the length of the reference arm is varied piezoelectrically. Using these data the minicomputer synchronously detects the phase at each of the 1024 points by a Fourier series method and displays the wavefront in contour and perspective plot on a storage oscilloscope in less than 1 min (Bruning et al. Paper WE16, OSA Annual Meeting, Oct. 1972). The array of intensities is sampled and averaged many times in a random fashion so that the effects of air turbulence, vibrations, and thermal drifts are minimized. Very significant is the fact that wavefront errors in the interferometer are easily determined and may be automatically subtracted from current or subsequent wavefrots. Various programs supporting the measurement system include software for determining the aperture boundary, sum and difference of wavefronts, removal or insertion of tilt and focus errors, and routines for spatial manipulation of wavefronts. FFT programs transform wavefront data into point spread function and modulus and phase of the optical transfer function of lenses. Display programs plot these functions in contour and perspective. The system has been designed to optimize the collection of data to give higher than usual accuracy in measuring the individual elements and final performance of assembled diffraction limited optical systems, and furthermore, the short loop time of a few minutes makes the system an attractive alternative to constraints imposed by test glasses in the optical shop.

1,300 citations

Journal ArticleDOI
TL;DR: Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer and emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
Abstract: Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.

835 citations

Journal ArticleDOI
TL;DR: Recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling is summarized and new directions for future studies are discussed.
Abstract: Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality. Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress- and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.

535 citations