scispace - formally typeset
Search or ask a question
Author

Yoshio Yamauchi

Bio: Yoshio Yamauchi is an academic researcher from University of Tokyo. The author has contributed to research in topics: Supercritical fluid chromatography & Silica gel. The author has an hindex of 30, co-authored 86 publications receiving 3082 citations. Previous affiliations of Yoshio Yamauchi include Tokyo Metropolitan University & Nagoya City University.


Papers
More filters
Journal ArticleDOI
TL;DR: The roles of the Niemann-Pick type C1 protein in mediating the endosomal transport of LDL-derived cholesterol and endogenously synthesized cholesterol are discussed and a close relationship between the ACAT substrate pool and the cholesterol efflux pool is proposed.
Abstract: Mammalian cells acquire cholesterol from low-density lipoprotein (LDL) and from endogenous biosynthesis. The roles of the Niemann-Pick type C1 protein in mediating the endosomal transport of LDL-derived cholesterol and endogenously synthesized cholesterol are discussed. Excess cellular cholesterol is converted to cholesteryl esters by the enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) 1 or is removed from a cell by cellular cholesterol efflux at the plasma membrane. A close relationship between the ACAT substrate pool and the cholesterol efflux pool is proposed. Sterol-sensing domains (SSDs) are present in several membrane proteins, including NPC1, HMG-CoA reductase, and the SREBP cleavage-activating protein. The functions of SSDs are described. ACAT1 is an endoplasmic reticulum cholesterol sensor and contains a signature motif characteristic of the membrane-bound acyltransferase family. The nonvesicular cholesterol translocation processes involve the START domain proteins and the oxysterol binding protein-related proteins (ORPs). The properties of these proteins are summarized.

536 citations

Journal ArticleDOI
TL;DR: Basic data on a major protein set associated with the postsynaptic density and a basis for future functional studies of this important neural machinery are provided.
Abstract: Protein constituents of the postsynaptic density (PSD) fraction were analysed using an integrated liquid chromatography (LC)-based protein identification system, which was constructed by coupling microscale two-dimensional liquid chromatography (2DLC) with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) and an automated data analysis system. The PSD fraction prepared from rat forebrain was solubilized in 6 m guanidium hydrochloride, and the proteins were digested with trypsin after S-carbamoylmethylation under reducing conditions. The tryptic peptide mixture was then analysed with the 2DLC-MS/MS system in a data-dependent mode, and the resultant spectral data were automatically processed to search a genome sequence database for protein identification. In triplicate analyses, the system allowed assignments of 5264 peptides, which could finally be attributed to 492 proteins. The PSD contained various proteins involved in signalling transduction, including receptors, ion channel proteins, protein kinases and phosphatases, G-protein and related proteins, scaffold proteins, and adaptor proteins. Structural proteins, including membrane proteins involved in cell adhesion and cell-cell interaction, proteins involved in endocytosis, motor proteins, and cytoskeletal proteins were also abundant. These results provide basic data on a major protein set associated with the PSD and a basis for future functional studies of this important neural machinery.

205 citations

Journal ArticleDOI
TL;DR: The direct nanoflow LC (DNLC) system, which is equipped with a fritless high-resolution electrospray interface column packed with 1-microm reversed-phase (RP) beads and a novel splitless nan oflow gradient elution system to operate the column, is described.
Abstract: One of the strategies of functional proteomics, research aiming to discover gene function at the protein level, is the comprehensive analysis of protein-protein interactions related to the functional linkage among proteins and analysis of functional cellular machinery to better understand the basis of cell functions. Here, we describe the direct nanoflow LC (DNLC) system, which is equipped with a fritless high-resolution electrospray interface column packed with 1-microm reversed-phase (RP) beads and a novel splitless nanoflow gradient elution system to operate the column. Using RP-DNLC at an extremely slow flow rate, <50 nL/min, combined with data-dependent collision-induced dissociation tandem MS (MS/MS) and computer-assisted retrieval of spectra, we identified approximately 100 protein components in a biological complex such as a premature mammalian ribosome pull-down from cultured cells when we used an epitope-tagged protein as bait. Because this analysis is most sensitive, requires approximately 0.2 microg of total protein, and is a fully automated 1-h process, we anticipated that it should be an excellent tool for analyzing a limited amount of functional multi-protein complexes in cells.

197 citations

Journal ArticleDOI
TL;DR: Methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.
Abstract: Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.

149 citations

Journal ArticleDOI
TL;DR: It is concluded that apoA-I activates PKCα by PC-PLC-mediated generation of diacylglycerol initiated by the removal of cellular sphingomyelin, and subsequently phosphorylates and stabilizes ABCA1.

134 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers.
Abstract: Copper is an essential trace element in living systems, present in the parts per million concentration range. It is a key cofactor in a diverse array of biological oxidation-reduction reactions. These involve either outer-sphere electron transfer, as in the blue copper proteins and the Cu{sub A} site of cytochrome oxidase and nitrous oxide redutase, or inner-sphere electron transfer in the binding, activation, and reduction of dioxygen, superoxide, nitrite, and nitrous oxide. Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 (T1) or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers. 428 refs.

3,241 citations

Journal ArticleDOI
29 Apr 2010-Nature
TL;DR: It is shown that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage and that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation.
Abstract: The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1alpha/beta-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.

2,904 citations

Journal ArticleDOI
29 Apr 2011-Cell
TL;DR: The central roles of macrophages in each of the stages of disease pathogenesis are discussed, including atherosclerosis, stroke, and sudden cardiac death.

1,986 citations

Journal ArticleDOI
TL;DR: A novel mammalian autophagy factor, Atg13, is reported, which forms a stable approximately 3-MDa protein complex with ULK1 and FIP200, and suggests that mTORC1 suppressesAutophagy through direct regulation of the approximately 3,MDa ULK 1-Atg13-FIP200 complex.
Abstract: Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable approximately 3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1-Atg13-FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1-Atg13-FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the approximately 3-MDa ULK1-Atg13-FIP200 complex.

1,754 citations

Journal ArticleDOI
TL;DR: Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Abstract: Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.

1,665 citations