scispace - formally typeset
Search or ask a question
Author

Yoshitaka Masutani

Bio: Yoshitaka Masutani is an academic researcher from University of Tokyo. The author has contributed to research in topics: Imaging phantom & Magnetic resonance imaging. The author has an hindex of 1, co-authored 1 publications receiving 316 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The system frame was manufactured using polyethylene terephthalate (PET) and was actuated using ultrasonic motors, and the total accuracy of the system was approximately 3.0 mm.
Abstract: A variety of medical robots for stereotactic neurosurgery has been developed in recent years. Almost of all these robots use computed tomography (CT) to scan the brain of the patient before and during surgery. Currently, we are developing a needle insertion manipulator for magnetic resonance imaging (MRI)-guided neurosurgery. MRI techniques, including MRI angiography and functional MRI, are attractive for the development of interventional MRI therapies and operations. If a robot were available, these therapies would be minimally invasive, with more accurate guidance than is possible with current CT-guided systems. Actuation of a robot in an MRI environment is difficult because of the presence of strong magnetic fields. Therefore, the robot must be constructed of nonmagnetic materials. The system frame was manufactured using polyethylene terephthalate (PET) and was actuated using ultrasonic motors. Accuracy-evaluation procedures and phantom tests have been performed. The total accuracy of the system was approximately 3.0 mm. No artifacts caused by the manipulator were observed in the images.

326 citations


Cited by
More filters
Journal ArticleDOI
14 Oct 2003
TL;DR: A broad overview of medical robot systems used in surgery, including basic concepts of computer-integrated surgery, surgical CAD/CAM, and surgical assistants, and some of the major design issues particular to medical robots is provided.
Abstract: This paper provides a broad overview of medical robot systems used in surgery. After introducing basic concepts of computer-integrated surgery, surgical CAD/CAM, and surgical assistants, it discusses some of the major design issues particular to medical robots. It then illustrates these issues and the broader themes introduced earlier with examples of current surgical CAD/CAM and surgical assistant systems. Finally, it provides a brief synopsis of current research challenges and closes with a few thoughts on the research/industry/clinician teamwork that is essential for progress in the field.

1,015 citations

Patent
13 Aug 2003
TL;DR: In this paper, a robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector.
Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool. The robot is MRI compatible and can be configured to operate within a closed magnet bore. The arms are driven about vertical and horizontal axes by piezoelectric motors.

910 citations

Journal ArticleDOI
TL;DR: In this paper, a nonholonomic kinematics, control, and path planning model for steerable flexible needles with bevel tips is proposed to reach a specified 3D target.
Abstract: As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous therapies, facilitate research on therapy effectiveness, and eventually enable new minimally invasive techniques. In this paper, we consider a first step toward active needle steering: design and experimental validation of a nonholonomic model for steering flexible needles with bevel tips. The model generalizes the standard three degree-of-freedom (DOF) nonholonomic unicycle and bicycle models to 6 DOF using Lie group theory. Model parameters are fit using experimental data, acquired via a robotic device designed for the specific purpose of inserting and steering a flexible needle. The experiments quantitatively validate the bevel-tip needle steering model, enabling future research in flexible needle path planning, control, and simulation.

550 citations

Proceedings Article
01 Jan 2004
TL;DR: The design and experimental validation of a nonholonomic model for steering flexible needles with bevel tips are considered, which generalizes the standard three degree-of-freedom (DOF) non holonomic unicycle and bicycle models to 6 DOF using Lie group theory.
Abstract: As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous therapies, facilitate research on therapy effectiveness, and eventually enable new minimally invasive techniques. In this paper, we consider a first step toward active needle steering: design and experimental validation of a nonholonomic model for steering flexible needles with bevel tips. The model generalizes the standard three degree-of-freedom (DOF) nonholonomic unicycle and bicycle models to 6 DOF using Lie group theory. Model parameters are fit using experimental data, acquired via a robotic device designed for the specific purpose of inserting and steering a flexible needle. The experiments quantitatively validate the bevel-tip needle steering model, enabling future research in flexible needle path planning, control, and simulation.

441 citations

Journal ArticleDOI
TL;DR: Robotic technology is enhancing surgery through improved precision, stability, and dexterity through image-guided procedures and microsurgical procedures in ophthalmology, and for surgical training and simulation.
Abstract: Robotic technology is enhancing surgery through improved precision, stability, and dexterity. In image-guided procedures, robots use magnetic resonance and computed tomography image data to guide instruments to the treatment site. This requires new algorithms and user interfaces for planning procedures; it also requires sensors for registering the patient's anatomy with the preoperative image data. Minimally invasive procedures use remotely controlled robots that allow the surgeon to work inside the patient's body without making large incisions. Specialized mechanical designs and sensing technologies are needed to maximize dexterity under these access constraints. Robots have applications in many surgical specialties. In neurosurgery, image-guided robots can biopsy brain lesions with minimal damage to adjacent tissue. In orthopedic surgery, robots are routinely used to shape the femur to precisely fit prosthetic hip joint replacements. Robotic systems are also under development for closed-chest heart bypass, for microsurgical procedures in ophthalmology, and for surgical training and simulation. Although results from initial clinical experience is positive, issues of clinician acceptance, high capital costs, performance validation, and safety remain to be addressed.

336 citations