scispace - formally typeset
Search or ask a question

Showing papers by "Yoshua Bengio published in 2018"


Proceedings ArticleDOI
15 Feb 2018
TL;DR: Graph Attention Networks (GATs) as mentioned in this paper leverage masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations.
Abstract: We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).

7,904 citations


Proceedings Article
20 Aug 2018
TL;DR: Deep InfoMax (DIM) as discussed by the authors maximizes mutual information between an input and the output of a deep neural network encoder by matching to a prior distribution adversarially.
Abstract: This work investigates unsupervised learning of representations by maximizing mutual information between an input and the output of a deep neural network encoder. Importantly, we show that structure matters: incorporating knowledge about locality in the input into the objective can significantly improve a representation’s suitability for downstream tasks. We further control characteristics of the representation by matching to a prior distribution adversarially. Our method, which we call Deep InfoMax (DIM), outperforms a number of popular unsupervised learning methods and compares favorably with fully-supervised learning on several classification tasks in with some standard architectures. DIM opens new avenues for unsupervised learning of representations and is an important step towards flexible formulations of representation learning objectives for specific end-goals.

1,218 citations


Posted Content
TL;DR: It is shown that structure matters: incorporating knowledge about locality in the input into the objective can significantly improve a representation’s suitability for downstream tasks and is an important step towards flexible formulations of representation learning objectives for specific end-goals.
Abstract: In this work, we perform unsupervised learning of representations by maximizing mutual information between an input and the output of a deep neural network encoder. Importantly, we show that structure matters: incorporating knowledge about locality of the input to the objective can greatly influence a representation's suitability for downstream tasks. We further control characteristics of the representation by matching to a prior distribution adversarially. Our method, which we call Deep InfoMax (DIM), outperforms a number of popular unsupervised learning methods and competes with fully-supervised learning on several classification tasks. DIM opens new avenues for unsupervised learning of representations and is an important step towards flexible formulations of representation-learning objectives for specific end-goals.

871 citations


Proceedings ArticleDOI
25 Sep 2018
TL;DR: HotpotQA as discussed by the authors is a dataset with 113k Wikipedia-based question-answer pairs with four key features: finding and reasoning over multiple supporting documents to answer; the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; providing sentence-level supporting facts required for reasoning; and offering a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison.
Abstract: Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems’ ability to extract relevant facts and perform necessary comparison We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions

850 citations


Posted Content
TL;DR: Deep Graph Infomax (DGI) is presented, a general approach for learning node representations within graph-structured data in an unsupervised manner that is readily applicable to both transductive and inductive learning setups.
Abstract: We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs---both derived using established graph convolutional network architectures. The learnt patch representations summarize subgraphs centered around nodes of interest, and can thus be reused for downstream node-wise learning tasks. In contrast to most prior approaches to unsupervised learning with GCNs, DGI does not rely on random walk objectives, and is readily applicable to both transductive and inductive learning setups. We demonstrate competitive performance on a variety of node classification benchmarks, which at times even exceeds the performance of supervised learning.

834 citations


Proceedings Article
03 Jul 2018
TL;DR: A Mutual Information Neural Estimator (MINE) is presented that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent, and applied to improve adversarially trained generative models.
Abstract: We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement the Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.

820 citations


Proceedings ArticleDOI
29 Jul 2018
TL;DR: This paper proposes a novel CNN architecture, called SincNet, that encourages the first convolutional layer to discover more meaningful filters, based on parametrized sinc functions, which implement band-pass filters.
Abstract: Deep learning is progressively gaining popularity as a viable alternative to i-vectors for speaker recognition. Promising results have been recently obtained with Convolutional Neural Networks (CNNs) when fed by raw speech samples directly. Rather than employing standard hand-crafted features, the latter CNNs learn low-level speech representations from waveforms, potentially allowing the network to better capture important narrow-band speaker characteristics such as pitch and formants. Proper design of the neural network is crucial to achieve this goal.This paper proposes a novel CNN architecture, called SincNet, that encourages the first convolutional layer to discover more meaningful filters. SincNet is based on parametrized sinc functions, which implement band-pass filters. In contrast to standard CNNs, that learn all elements of each filter, only low and high cutoff frequencies are directly learned from data with the proposed method. This offers a very compact and efficient way to derive a customized filter bank specifically tuned for the desired application.Our experiments, conducted on both speaker identification and speaker verification tasks, show that the proposed architecture converges faster and performs better than a standard CNN on raw waveforms.

605 citations


Posted Content
TL;DR: It is shown that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.
Abstract: Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.

574 citations


Posted Content
TL;DR: A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
Abstract: This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.

557 citations


Proceedings ArticleDOI
27 Sep 2018
TL;DR: Deep Graph Infomax (DGI) as discussed by the authors is a general approach for learning node representations within graph-structured data in an unsupervised manner, which relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs.
Abstract: We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs—both derived using established graph convolutional network architectures. The learnt patch representations summarize subgraphs centered around nodes of interest, and can thus be reused for downstream node-wise learning tasks. In contrast to most prior approaches to unsupervised learning with GCNs, DGI does not rely on random walk objectives, and is readily applicable to both transductive and inductive learning setups. We demonstrate competitive performance on a variety of node classification benchmarks, which at times even exceeds the performance of supervised learning.

503 citations


Posted Content
TL;DR: This work shows that deep ReLU networks are biased towards low frequency functions, and studies the robustness of the frequency components with respect to parameter perturbation, to develop the intuition that the parameters must be finely tuned to express high frequency functions.
Abstract: Neural networks are known to be a class of highly expressive functions able to fit even random input-output mappings with $100\%$ accuracy. In this work, we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we show that deep ReLU networks are biased towards low frequency functions, meaning that they cannot have local fluctuations without affecting their global behavior. Intuitively, this property is in line with the observation that over-parameterized networks find simple patterns that generalize across data samples. We also investigate how the shape of the data manifold affects expressivity by showing evidence that learning high frequencies gets \emph{easier} with increasing manifold complexity, and present a theoretical understanding of this behavior. Finally, we study the robustness of the frequency components with respect to parameter perturbation, to develop the intuition that the parameters must be finely tuned to express high frequency functions.

Posted Content
TL;DR: Manifold Mixup, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations, improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.
Abstract: Deep neural networks excel at learning the training data, but often provide incorrect and confident predictions when evaluated on slightly different test examples. This includes distribution shifts, outliers, and adversarial examples. To address these issues, we propose Manifold Mixup, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations. Manifold Mixup leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation. As a result, neural networks trained with Manifold Mixup learn class-representations with fewer directions of variance. We prove theory on why this flattening happens under ideal conditions, validate it on practical situations, and connect it to previous works on information theory and generalization. In spite of incurring no significant computation and being implemented in a few lines of code, Manifold Mixup improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.

Proceedings Article
03 Dec 2018
TL;DR: This paper proposes a conceptually simple and general framework called MetaGAN for few-shot learning problems, and shows that with this MetaGAN framework, it can extend supervised few- shot learning models to naturally cope with unlabeled data.
Abstract: In this paper, we propose a conceptually simple and general framework called MetaGAN for few-shot learning problems. Most state-of-the-art few-shot classification models can be integrated with MetaGAN in a principled and straightforward way. By introducing an adversarial generator conditioned on tasks, we augment vanilla few-shot classification models with the ability to discriminate between real and fake data. We argue that this GAN-based approach can help few-shot classifiers to learn sharper decision boundary, which could generalize better. We show that with our MetaGAN framework, we can extend supervised few-shot learning models to naturally cope with unlabeled data. Different from previous work in semi-supervised few-shot learning, our algorithms can deal with semi-supervision at both sample-level and task-level. We give theoretical justifications of the strength of MetaGAN, and validate the effectiveness of MetaGAN on challenging few-shot image classification benchmarks.

Proceedings Article
01 Jan 2018
TL;DR: The proposed method combines scalable gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework and is capable of learning complex uncertainty structure beyond a point estimate or a simple Gaussian approximation during fast adaptation.
Abstract: Due to the inherent model uncertainty, learning to infer Bayesian posterior from a few-shot dataset is an important step towards robust meta-learning. In this paper, we propose a novel Bayesian model-agnostic meta-learning method. The proposed method combines efficient gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. Unlike previous methods, during fast adaptation, the method is capable of learning complex uncertainty structure beyond a simple Gaussian approximation, and during meta-update, a novel Bayesian mechanism prevents meta-level overfitting. Remaining a gradient-based method, it is also the first Bayesian model-agnostic meta-learning method applicable to various tasks including reinforcement learning. Experiment results show the accuracy and robustness of the proposed method in sinusoidal regression, image classification, active learning, and reinforcement learning.

Proceedings Article
15 Feb 2018
TL;DR: The authors proposed a multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model, and trained this model on several data sources with multiple training objectives on over 100 million sentences.
Abstract: A lot of the recent success in natural language processing (NLP) has been driven by distributed vector representations of words trained on large amounts of text in an unsupervised manner. These representations are typically used as general purpose features for words across a range of NLP problems. However, extending this success to learning representations of sequences of words, such as sentences, remains an open problem. Recent work has explored unsupervised as well as supervised learning techniques with different training objectives to learn general purpose fixed-length sentence representations. In this work, we present a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model. We train this model on several data sources with multiple training objectives on over 100 million sentences. Extensive experiments demonstrate that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods. We present substantial improvements in the context of transfer learning and low-resource settings using our learned general-purpose representations.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generator model for drawing (generating) Chinese characters.
Abstract: Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters.

Posted Content
TL;DR: In this article, the authors investigate the learning dynamics of neural networks as they train on single classification tasks, and find that certain examples are forgotten with high frequency, and some not at all.
Abstract: Inspired by the phenomenon of catastrophic forgetting, we investigate the learning dynamics of neural networks as they train on single classification tasks. Our goal is to understand whether a related phenomenon occurs when data does not undergo a clear distributional shift. We define a `forgetting event' to have occurred when an individual training example transitions from being classified correctly to incorrectly over the course of learning. Across several benchmark data sets, we find that: (i) certain examples are forgotten with high frequency, and some not at all; (ii) a data set's (un)forgettable examples generalize across neural architectures; and (iii) based on forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.

Journal ArticleDOI
23 Mar 2018
TL;DR: This paper revise one of the most popular RNN models, namely, gated recurrent units (GRUs), and proposes a simplified architecture that turned out to be very effective for ASR, and proposes to replace hyperbolic tangent with rectified linear unit activations.
Abstract: A field that has directly benefited from the recent advances in deep learning is automatic speech recognition (ASR). Despite the great achievements of the past decades, however, a natural and robust human–machine speech interaction still appears to be out of reach, especially in challenging environments characterized by significant noise and reverberation. To improve robustness, modern speech recognizers often employ acoustic models based on recurrent neural networks (RNNs) that are naturally able to exploit large time contexts and long-term speech modulations. It is thus of great interest to continue the study of proper techniques for improving the effectiveness of RNNs in processing speech signals. In this paper, we revise one of the most popular RNN models, namely, gated recurrent units (GRUs), and propose a simplified architecture that turned out to be very effective for ASR. The contribution of this work is twofold: First, we analyze the role played by the reset gate, showing that a significant redundancy with the update gate occurs. As a result, we propose to remove the former from the GRU design, leading to a more efficient and compact single-gate model. Second, we propose to replace hyperbolic tangent with rectified linear unit activations. This variation couples well with batch normalization and could help the model learn long-term dependencies without numerical issues. Results show that the proposed architecture, called light GRU, not only reduces the per-epoch training time by more than 30% over a standard GRU, but also consistently improves the recognition accuracy across different tasks, input features, noisy conditions, as well as across different ASR paradigms, ranging from standard DNN-HMM speech recognizers to end-to-end connectionist temporal classification models.

Proceedings Article
01 Jan 2018
TL;DR: A novel view of learning on dendritic cortical circuits and on how the brain may solve the long-standing synaptic credit assignment problem is introduced, in which error-driven synaptic plasticity adapts the network towards a global desired output.
Abstract: Deep learning has seen remarkable developments over the last years, many of them inspired by neuroscience. However, the main learning mechanism behind these advances – error backpropagation – appears to be at odds with neurobiology. Here, we introduce a multilayer neuronal network model with simplified dendritic compartments in which error-driven synaptic plasticity adapts the network towards a global desired output. In contrast to previous work our model does not require separate phases and synaptic learning is driven by local dendritic prediction errors continuously in time. Such errors originate at apical dendrites and occur due to a mismatch between predictive input from lateral interneurons and activity from actual top-down feedback. Through the use of simple dendritic compartments and different cell-types our model can represent both error and normal activity within a pyramidal neuron. We demonstrate the learning capabilities of the model in regression and classification tasks, and show analytically that it approximates the error backpropagation algorithm. Moreover, our framework is consistent with recent observations of learning between brain areas and the architecture of cortical microcircuits. Overall, we introduce a novel view of learning on dendritic cortical circuits and on how the brain may solve the long-standing synaptic credit assignment problem.

Proceedings Article
24 May 2018
TL;DR: This paper achieves better results for translation on challenging datasets as well as for cross-domain retrieval on realistic datasets and compares the model to the state-of-the-art in multi-modal image translation.
Abstract: Deep image translation methods have recently shown excellent results, outputting high-quality images covering multiple modes of the data distribution. There has also been increased interest in disentangling the internal representations learned by deep methods to further improve their performance and achieve a finer control. In this paper, we bridge these two objectives and introduce the concept of cross-domain disentanglement. We aim to separate the internal representation into three parts. The shared part contains information for both domains. The exclusive parts, on the other hand, contain only factors of variation that are particular to each domain. We achieve this through bidirectional image translation based on Generative Adversarial Networks and cross-domain autoencoders, a novel network component. Our model offers multiple advantages. We can output diverse samples covering multiple modes of the distributions of both domains, perform domain- specific image transfer and interpolation, and cross-domain retrieval without the need of labeled data, only paired images. We compare our model to the state-of-the-art in multi-modal image translation and achieve better results for translation on challenging datasets as well as for cross-domain retrieval on realistic datasets.

Proceedings ArticleDOI
Dmitriy Serdyuk1, Yongqiang Wang1, Christian Fuegen1, Anuj Kumar1, Baiyang Liu1, Yoshua Bengio1 
15 Apr 2018
TL;DR: This study showed that the trained model can achieve reasonable good result and demonstrated that the model can capture the semantic attention directly from the audio features.
Abstract: Spoken language understanding system is traditionally designed as a pipeline of a number of components. First, the audio signal is processed by an automatic speech recognizer for transcription or n-best hypotheses. With the recognition results, a natural language understanding system classifies the text to structured data as domain, intent and slots for down-streaming consumers, such as dialog system, hands-free applications. These components are usually developed and optimized independently. In this paper, we present our study on an end-to-end learning system for spoken language understanding. With this unified approach, we can infer the semantic meaning directly from audio features without the intermediate text representation. This study showed that the trained model can achieve reasonable good result and demonstrated that the model can capture the semantic attention directly from the audio features.

Journal ArticleDOI
TL;DR: The authors proposed a fine-grained (or 2D) attention mechanism where each dimension of a context vector will receive a separate attention score, which improves the translation quality in terms of BLEU score.

Proceedings Article
27 Sep 2018
Abstract: Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.

Journal ArticleDOI
09 Jul 2018
TL;DR: In this paper, the authors present a set of real-world problems that require integrating multiple sources of information, such as vision, language, audio, etc., in order to understand a scene in a movie or answer a question about an image.
Abstract: Many real-world problems require integrating multiple sources of information. Sometimes these problems involve multiple, distinct modalities of information — vision, language, audio, etc. — as is required to understand a scene in a movie or answer a question about an image. Other times, these problems involve multiple sources of the same kind of input, i.e. when summarizing several documents or drawing one image in the style of another.

Proceedings Article
27 Sep 2018
TL;DR: It is found that certain examples are forgotten with high frequency, and some not at all; a data set’s (un)forgettable examples generalize across neural architectures; and a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.
Abstract: Inspired by the phenomenon of catastrophic forgetting, we investigate the learning dynamics of neural networks as they train on single classification tasks. Our goal is to understand whether a related phenomenon occurs when data does not undergo a clear distributional shift. We define a “forgetting event” to have occurred when an individual training example transitions from being classified correctly to incorrectly over the course of learning. Across several benchmark data sets, we find that: (i) certain examples are forgotten with high frequency, and some not at all; (ii) a data set’s (un)forgettable examples generalize across neural architectures; and (iii) based on forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.

Posted Content
TL;DR: This work presents a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model and demonstrates that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods.
Abstract: A lot of the recent success in natural language processing (NLP) has been driven by distributed vector representations of words trained on large amounts of text in an unsupervised manner These representations are typically used as general purpose features for words across a range of NLP problems However, extending this success to learning representations of sequences of words, such as sentences, remains an open problem Recent work has explored unsupervised as well as supervised learning techniques with different training objectives to learn general purpose fixed-length sentence representations In this work, we present a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model We train this model on several data sources with multiple training objectives on over 100 million sentences Extensive experiments demonstrate that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods We present substantial improvements in the context of transfer learning and low-resource settings using our learned general-purpose representations

Proceedings Article
12 Feb 2018
TL;DR: FigureQA is envisioned as a first step towards developing models that can intuitively recognize patterns from visual representations of data, and preliminary results indicate that the task poses a significant machine learning challenge.
Abstract: We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data.


Posted Content
18 Oct 2018
TL;DR: The BabyAI research platform is introduced to support investigations towards including humans in the loop for grounded language learning and puts forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.
Abstract: Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.

Journal ArticleDOI
TL;DR: It is shown that deep convolutional networks can be used to predict the ranking of model structures solely on the basis of their raw three-dimensional atomic densities, without any feature tuning.
Abstract: Motivation The computational prediction of a protein structure from its sequence generally relies on a method to assess the quality of protein models. Most assessment methods rank candidate models using heavily engineered structural features, defined as complex functions of the atomic coordinates. However, very few methods have attempted to learn these features directly from the data. Results We show that deep convolutional networks can be used to predict the ranking of model structures solely on the basis of their raw three-dimensional atomic densities, without any feature tuning. We develop a deep neural network that performs on par with state-of-the-art algorithms from the literature. The network is trained on decoys from the CASP7 to CASP10 datasets and its performance is tested on the CASP11 dataset. Additional testing on decoys from the CASP12, CAMEO and 3DRobot datasets confirms that the network performs consistently well across a variety of protein structures. While the network learns to assess structural decoys globally and does not rely on any predefined features, it can be analyzed to show that it implicitly identifies regions that deviate from the native structure. Availability and implementation The code and the datasets are available at https://github.com/lamoureux-lab/3DCNN_MQA. Supplementary information Supplementary data are available at Bioinformatics online.