scispace - formally typeset
Search or ask a question
Author

Yoshua Bengio

Bio: Yoshua Bengio is an academic researcher from Université de Montréal. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 202, co-authored 1033 publications receiving 420313 citations. Previous affiliations of Yoshua Bengio include McGill University & Centre de Recherches Mathématiques.


Papers
More filters
Posted Content
TL;DR: It is shown mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models: they possess an energy function as a consequence of Kirchhoff's laws governing electrical circuits.
Abstract: We introduce a principled method to train end-to-end analog neural networks by stochastic gradient descent. In these analog neural networks, the weights to be adjusted are implemented by the conductances of programmable resistive devices such as memristors [Chua, 1971], and the nonlinear transfer functions (or `activation functions') are implemented by nonlinear components such as diodes. We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models: they possess an energy function as a consequence of Kirchhoff's laws governing electrical circuits. This property enables us to train them using the Equilibrium Propagation framework [Scellier and Bengio, 2017]. Our update rule for each conductance, which is local and relies solely on the voltage drop across the corresponding resistor, is shown to compute the gradient of the loss function. Our numerical simulations, which use the SPICE-based Spectre simulation framework to simulate the dynamics of electrical circuits, demonstrate training on the MNIST classification task, performing comparably or better than equivalent-size software-based neural networks. Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.

43 citations

Proceedings Article
30 Apr 2020
TL;DR: In this article, a meta-learning objective that maximizes the speed of transfer on a modified distribution is proposed to learn how to modularize acquired knowledge, where the objective is to factor a joint distribution into appropriate conditionals consistent with the causal directions.
Abstract: We propose to use a meta-learning objective that maximizes the speed of transfer on a modified distribution to learn how to modularize acquired knowledge. In particular, we focus on how to factor a joint distribution into appropriate conditionals, consistent with the causal directions. We explain when this can work, using the assumption that the changes in distributions are localized (e.g. to one of the marginals, for example due to an intervention on one of the variables). We prove that under this assumption of localized changes in causal mechanisms, the correct causal graph will tend to have only a few of its parameters with non-zero gradient, i.e. that need to be adapted (those of the modified variables). We argue and observe experimentally that this leads to faster adaptation, and use this property to define a meta-learning surrogate score which, in addition to a continuous parametrization of graphs, would favour correct causal graphs. Finally, motivated by the AI agent point of view (e.g. of a robot discovering its environment autonomously), we consider how the same objective can discover the causal variables themselves, as a transformation of observed low-level variables with no causal meaning. Experiments in the two-variable case validate the proposed ideas and theoretical results.

43 citations

Proceedings Article
29 Nov 1993
TL;DR: This work considers and compares alternative algorithms and architectures on tasks for which the span of the input/output dependencies can be controlled and shows performance qualitatively superior to that obtained with backpropagation.
Abstract: Learning to recognize or predict sequences using long-term context has many applications. However, practical and theoretical problems are found in training recurrent neural networks to perform tasks in which input/output dependencies span long intervals. Starting from a mathematical analysis of the problem, we consider and compare alternative algorithms and architectures on tasks for which the span of the input/output dependencies can be controlled. Results on the new algorithms show performance qualitatively superior to that obtained with backpropagation.

43 citations

Journal ArticleDOI
TL;DR: A "hard parallelizable mixture" methodology which yields significantly reduced training time through modularization and parallelization: the training data is iteratively partitioned by a "gater" model in such a way that it becomes easy to learn an "expert" model separately in each region of the partition.
Abstract: A challenge for statistical learning is to deal with large data sets, e.g. in data mining. The training time of ordinary Support Vector Machines is at least quadratic, which raises a serious research challenge if we want to deal with data sets of millions of examples. We propose a "hard parallelizable mixture" methodology which yields significantly reduced training time through modularization and parallelization: the training data is iteratively partitioned by a "gater" model in such a way that it becomes easy to learn an "expert" model separately in each region of the partition. A probabilistic extension and the use of a set of generative models allows representing the gater so that all pieces of the model are locally trained. For SVMs, time complexity appears empirically to local growth linearly with the number of examples, while generalization performance can be enhanced. For the probabilistic version of the algorithm, the iterative algorithm probably goes down in a cost function that is an upper bound on the negative log-likelihood.

42 citations

Posted Content
TL;DR: Discriminator Driven Latent Sampling is shown to be highly efficient compared to previous methods which work in the high-dimensional pixel space and can be applied to improve on previously trained GANs of many types and achieves a new state-of-the-art in unconditional image synthesis setting without introducing extra parameters or additional training.
Abstract: We show that the sum of the implicit generator log-density $\log p_g$ of a GAN with the logit score of the discriminator defines an energy function which yields the true data density when the generator is imperfect but the discriminator is optimal, thus making it possible to improve on the typical generator (with implicit density $p_g$). To make that practical, we show that sampling from this modified density can be achieved by sampling in latent space according to an energy-based model induced by the sum of the latent prior log-density and the discriminator output score. This can be achieved by running a Langevin MCMC in latent space and then applying the generator function, which we call Discriminator Driven Latent Sampling~(DDLS). We show that DDLS is highly efficient compared to previous methods which work in the high-dimensional pixel space and can be applied to improve on previously trained GANs of many types. We evaluate DDLS on both synthetic and real-world datasets qualitatively and quantitatively. On CIFAR-10, DDLS substantially improves the Inception Score of an off-the-shelf pre-trained SN-GAN~\citep{sngan} from $8.22$ to $9.09$ which is even comparable to the class-conditional BigGAN~\citep{biggan} model. This achieves a new state-of-the-art in unconditional image synthesis setting without introducing extra parameters or additional training.

42 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations