scispace - formally typeset
Search or ask a question
Author

Yoshua Bengio

Bio: Yoshua Bengio is an academic researcher from Université de Montréal. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 202, co-authored 1033 publications receiving 420313 citations. Previous affiliations of Yoshua Bengio include McGill University & Centre de Recherches Mathématiques.


Papers
More filters
Posted Content
TL;DR: Although directMap+convNet can achieve the best results and surpass human-level performance, it is shown that writer adaptation in this case is still effective and a new adaptation layer is proposed to reduce the mismatch between training and test data on a particular source layer.
Abstract: Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning discriminative representations directly from raw data. Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should still help to boost the performance of HCCR. By integrating the traditional normalization-cooperated direction-decomposed feature map (directMap) with the deep convolutional neural network (convNet), we are able to obtain new highest accuracies for both online and offline HCCR on the ICDAR-2013 competition database. With this new framework, we can eliminate the needs for data augmentation and model ensemble, which are widely used in other systems to achieve their best results. This makes our framework to be efficient and effective for both training and testing. Furthermore, although directMap+convNet can achieve the best results and surpass human-level performance, we show that writer adaptation in this case is still effective. A new adaptation layer is proposed to reduce the mismatch between training and test data on a particular source layer. The adaptation process can be efficiently and effectively implemented in an unsupervised manner. By adding the adaptation layer into the pre-trained convNet, it can adapt to the new handwriting styles of particular writers, and the recognition accuracy can be further improved consistently and significantly. This paper gives an overview and comparison of recent deep learning based approaches for HCCR, and also sets new benchmarks for both online and offline HCCR.

39 citations

Journal ArticleDOI
TL;DR: In this brief communication, a few of these inherent privacy limitations of any decentralized automatic contact tracing system are discussed.

39 citations

Proceedings Article
03 Jun 2020
TL;DR: This work clarifies the distinction between the Fisher matrix, the Hessian, and the covariance matrix of the gradients and explains how both curvature and noise are relevant to properly estimate the generalization gap.

39 citations

Posted Content
TL;DR: In this paper, the authors evaluate natural gradient, an algorithm originally proposed in Amari (1997), for learning deep models and empirically evaluate the robustness of the algorithm to the ordering of the training set compared to stochastic gradient descent.
Abstract: We evaluate natural gradient, an algorithm originally proposed in Amari (1997), for learning deep models. The contributions of this paper are as follows. We show the connection between natural gradient and three other recently proposed methods for training deep models: Hessian-Free (Martens, 2010), Krylov Subspace Descent (Vinyals and Povey, 2012) and TONGA (Le Roux et al., 2008). We describe how one can use unlabeled data to improve the generalization error obtained by natural gradient and empirically evaluate the robustness of the algorithm to the ordering of the training set compared to stochastic gradient descent. Finally we extend natural gradient to incorporate second order information alongside the manifold information and provide a benchmark of the new algorithm using a truncated Newton approach for inverting the metric matrix instead of using a diagonal approximation of it.

39 citations

Journal ArticleDOI
TL;DR: A novel learning algorithm is proposed, called Back-Propagation for Sequences (BPS), for a particular class of dynamic neural networks in which some units have local feedback, and it has the same time complexity and space requirements as back-propagation (BP) applied to feedforward networks.

39 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations