scispace - formally typeset
Search or ask a question
Author

Yoshua Bengio

Bio: Yoshua Bengio is an academic researcher from Université de Montréal. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 202, co-authored 1033 publications receiving 420313 citations. Previous affiliations of Yoshua Bengio include McGill University & Centre de Recherches Mathématiques.


Papers
More filters
Posted Content
TL;DR: It is proved theoretically that, provided the learning rates are sufficiently small, at each time step of the second phase the dynamics of neurons and synapses follow the gradients of the loss given by BPTT.
Abstract: Equilibrium Propagation (EP) is a learning algorithm that bridges Machine Learning and Neuroscience, by computing gradients closely matching those of Backpropagation Through Time (BPTT), but with a learning rule local in space. Given an input $x$ and associated target $y$, EP proceeds in two phases: in the first phase neurons evolve freely towards a first steady state; in the second phase output neurons are nudged towards $y$ until they reach a second steady state. However, in existing implementations of EP, the learning rule is not local in time: the weight update is performed after the dynamics of the second phase have converged and requires information of the first phase that is no longer available physically. In this work, we propose a version of EP named Continual Equilibrium Propagation (C-EP) where neuron and synapse dynamics occur simultaneously throughout the second phase, so that the weight update becomes local in time. Such a learning rule local both in space and time opens the possibility of an extremely energy efficient hardware implementation of EP. We prove theoretically that, provided the learning rates are sufficiently small, at each time step of the second phase the dynamics of neurons and synapses follow the gradients of the loss given by BPTT (Theorem 1). We demonstrate training with C-EP on MNIST and generalize C-EP to neural networks where neurons are connected by asymmetric connections. We show through experiments that the more the network updates follows the gradients of BPTT, the best it performs in terms of training. These results bring EP a step closer to biology by better complying with hardware constraints while maintaining its intimate link with backpropagation.

20 citations

Posted Content
TL;DR: In this article, the authors propose a new model which guarantees that the top-down and bottom-up distributions can efficiently invert each other, which results in significantly deeper architectures while allowing for orders of magnitude more efficient approximate inference.
Abstract: Efficient unsupervised training and inference in deep generative models remains a challenging problem. One basic approach, called Helmholtz machine, involves training a top-down directed generative model together with a bottom-up auxiliary model used for approximate inference. Recent results indicate that better generative models can be obtained with better approximate inference procedures. Instead of improving the inference procedure, we here propose a new model which guarantees that the top-down and bottom-up distributions can efficiently invert each other. We achieve this by interpreting both the top-down and the bottom-up directed models as approximate inference distributions and by defining the model distribution to be the geometric mean of these two. We present a lower-bound for the likelihood of this model and we show that optimizing this bound regularizes the model so that the Bhattacharyya distance between the bottom-up and top-down approximate distributions is minimized. This approach results in state of the art generative models which prefer significantly deeper architectures while it allows for orders of magnitude more efficient approximate inference.

20 citations

Proceedings Article
01 Jan 1994
TL;DR: Using results from Markov chain theory, it is shown that the problem of diffusion is reduced if the transition probabilities approach 0 or 1, and under this condition, standard HMMs have very limited modeling capabilities, but input/output HMMs can still perform interesting computations.
Abstract: This paper studies the problem of diffusion in Markovian models, such as hidden Markov models (HMMs) and how it makes very difficult the task of learning of long-term dependencies in sequences. Using results from Markov chain theory, we show that the problem of diffusion is reduced if the transition probabilities approach 0 or 1. Under this condition, standard HMMs have very limited modeling capabilities, but input/output HMMs can still perform interesting computations.

19 citations

Posted Content
TL;DR: This paper provides a taxonomy for the licensing of data in the fields of artificial intelligence and machine learning and develops a web-based tool to generate license language espousing the taxonomies articulated in this paper.
Abstract: This paper provides a taxonomy for the licensing of data in the fields of artificial intelligence and machine learning. The paper's goal is to build towards a common framework for data licensing akin to the licensing of open source software. Increased transparency and resolving conceptual ambiguities in existing licensing language are two noted benefits of the approach proposed in the paper. In parallel, such benefits may help foster fairer and more efficient markets for data through bringing about clearer tools and concepts that better define how data can be used in the fields of AI and ML. The paper's approach is summarized in a new family of data license language - \textit{the Montreal Data License (MDL)}. Alongside this new license, the authors and their collaborators have developed a web-based tool to generate license language espousing the taxonomies articulated in this paper.

19 citations

Posted Content
TL;DR: A simple regularization scheme is introduced that encourages the weight vectors associated with each hidden unit to have similar norms and can be easily combined with standard stochastic maximum likelihood to yield an effective training strategy for the simultaneous training of all layers of the deep Boltzmann machine.
Abstract: The deep Boltzmann machine (DBM) has been an important development in the quest for powerful "deep" probabilistic models. To date, simultaneous or joint training of all layers of the DBM has been largely unsuccessful with existing training methods. We introduce a simple regularization scheme that encourages the weight vectors associated with each hidden unit to have similar norms. We demonstrate that this regularization can be easily combined with standard stochastic maximum likelihood to yield an effective training strategy for the simultaneous training of all layers of the deep Boltzmann machine.

19 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations