scispace - formally typeset
Search or ask a question
Author

Yoshua Bengio

Bio: Yoshua Bengio is an academic researcher from Université de Montréal. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 202, co-authored 1033 publications receiving 420313 citations. Previous affiliations of Yoshua Bengio include McGill University & Centre de Recherches Mathématiques.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that the temporal derivatives of the neural activities in equilibrium propagation are equal to the error derivatives computed iteratively by recurrent backpropagation in the side network.
Abstract: Recurrent backpropagation and equilibrium propagation are supervised learning algorithms for fixed-point recurrent neural networks, which differ in their second phase. In the first phase, both algorithms converge to a fixed point that corresponds to the configuration where the prediction is made. In the second phase, equilibrium propagation relaxes to another nearby fixed point corresponding to smaller prediction error, whereas recurrent backpropagation uses a side network to compute error derivatives iteratively. In this work, we establish a close connection between these two algorithms. We show that at every moment in the second phase, the temporal derivatives of the neural activities in equilibrium propagation are equal to the error derivatives computed iteratively by recurrent backpropagation in the side network. This work shows that it is not required to have a side network for the computation of error derivatives and supports the hypothesis that in biological neural networks, temporal derivatives of neural activities may code for error signals.

18 citations

Journal ArticleDOI
TL;DR: The AI climate impact visualizer as mentioned in this paper uses cutting-edge artificial intelligence (AI) approaches to develop an interactive personalized visualization tool, which allows a user to enter an address and provide them with an AI-imagined possible visualization of the future of this location in 2050 following the detrimental effects of climate change.
Abstract: Public awareness and concern about climate change often do not match the magnitude of its threat to humans and our environment. One reason for this disagreement is that it is difficult to mentally simulate the effects of a process as complex as climate change and to have a concrete representation of the impact that our individual actions will have on our own future, especially if the consequences are long term and abstract. To overcome these challenges, we propose to use cutting-edge artificial intelligence (AI) approaches to develop an interactive personalized visualization tool, the AI climate impact visualizer. It will allow a user to enter an address—be it their house, their school, or their workplace—-and it will provide them with an AI-imagined possible visualization of the future of this location in 2050 following the detrimental effects of climate change such as floods, storms, and wildfires. This image will be accompanied by accessible information regarding the science behind climate change, i.e., why extreme weather events are becoming more frequent and what kinds of changes are happening on a local and global scale.

18 citations

Posted Content
TL;DR: In this paper, the authors present a systematic and extensive analysis of experience replay in Q-learning methods, focusing on two fundamental properties: the replay capacity and the ratio of learning updates to experience collected (replay ratio).
Abstract: Experience replay is central to off-policy algorithms in deep reinforcement learning (RL), but there remain significant gaps in our understanding. We therefore present a systematic and extensive analysis of experience replay in Q-learning methods, focusing on two fundamental properties: the replay capacity and the ratio of learning updates to experience collected (replay ratio). Our additive and ablative studies upend conventional wisdom around experience replay -- greater capacity is found to substantially increase the performance of certain algorithms, while leaving others unaffected. Counterintuitively we show that theoretically ungrounded, uncorrected n-step returns are uniquely beneficial while other techniques confer limited benefit for sifting through larger memory. Separately, by directly controlling the replay ratio we contextualize previous observations in the literature and empirically measure its importance across a variety of deep RL algorithms. Finally, we conclude by testing a set of hypotheses on the nature of these performance benefits.

18 citations

Posted Content
TL;DR: This work proposes a novel constituency parsing scheme that achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.
Abstract: In this work, we propose a novel constituency parsing scheme. The model predicts a vector of real-valued scalars, named syntactic distances, for each split position in the input sentence. The syntactic distances specify the order in which the split points will be selected, recursively partitioning the input, in a top-down fashion. Compared to traditional shift-reduce parsing schemes, our approach is free from the potential problem of compounding errors, while being faster and easier to parallelize. Our model achieves competitive performance amongst single model, discriminative parsers in the PTB dataset and outperforms previous models in the CTB dataset.

18 citations

Posted Content
TL;DR: It is shown that the adaptation in an algorithm like MAML can significantly decrease the performance of an agent in a meta-reinforcement learning setting, even on a range of meta-training tasks.
Abstract: The capacity of meta-learning algorithms to quickly adapt to a variety of tasks, including ones they did not experience during meta-training, has been a key factor in the recent success of these methods on few-shot learning problems. This particular advantage of using meta-learning over standard supervised or reinforcement learning is only well founded under the assumption that the adaptation phase does improve the performance of our model on the task of interest. However, in the classical framework of meta-learning, this constraint is only mildly enforced, if not at all, and we only see an improvement on average over a distribution of tasks. In this paper, we show that the adaptation in an algorithm like MAML can significantly decrease the performance of an agent in a meta-reinforcement learning setting, even on a range of meta-training tasks.

18 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations