scispace - formally typeset
Search or ask a question
Author

Yoshua Bengio

Bio: Yoshua Bengio is an academic researcher from Université de Montréal. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 202, co-authored 1033 publications receiving 420313 citations. Previous affiliations of Yoshua Bengio include McGill University & Centre de Recherches Mathématiques.


Papers
More filters
Proceedings Article
13 Oct 2017
TL;DR: In this paper, the authors formalize the notion of iterative refinement in residual networks by showing that residual connections naturally encourage features of residual blocks to move along the negative gradient of loss as we go from one block to the next.
Abstract: Residual networks (Resnets) have become a prominent architecture in deep learning. However, a comprehensive understanding of Resnets is still a topic of ongoing research. A recent view argues that Resnets perform iterative refinement of features. We attempt to further expose properties of this aspect. To this end, we study Resnets both analytically and empirically. We formalize the notion of iterative refinement in Resnets by showing that residual connections naturally encourage features of residual blocks to move along the negative gradient of loss as we go from one block to the next. In addition, our empirical analysis suggests that Resnets are able to perform both representation learning and iterative refinement. In general, a Resnet block tends to concentrate representation learning behavior in the first few layers while higher layers perform iterative refinement of features. Finally we observe that sharing residual layers naively leads to representation explosion and counterintuitively, overfitting, and we show that simple existing strategies can help alleviating this problem.

16 citations

Proceedings ArticleDOI
01 Jul 2000
TL;DR: This paper presents a methodology to optimize several hyper-parameters, based on the computation of the gradient of a model selection criterion with respect to the hyper- Parameter, and shows that the implicit function theorem can be used to derive a formula for thehyper-parameter gradient involving second derivatives of the training criterion.
Abstract: Many machine learning algorithms can be formulated as the minimization of a training criterion which involves a hyper-parameter. This hyper-parameter is usually chosen by trial and error with a model selection criterion. In this paper we present a methodology to optimize several hyper-parameters, based on the computation of the gradient of a model selection criterion with respect to the hyper-parameters. In the case of a quadratic training criterion, the gradient of the selection criterion with respect to the hyper-parameters is efficiently computed by back-propagating through a Cholesky decomposition. In the more general case, we show that the implicit function theorem can be used to derive a formula for the hyper-parameter gradient involving second derivatives of the training criterion.

16 citations

Posted Content
TL;DR: A new adaptive learning rate algorithm, which utilizes curvature information for automatically tuning the learning rates and a new variance reduction technique to speed up the convergence of SGD.
Abstract: Stochastic gradient algorithms have been the main focus of large-scale learning problems and they led to important successes in machine learning. The convergence of SGD depends on the careful choice of learning rate and the amount of the noise in stochastic estimates of the gradients. In this paper, we propose a new adaptive learning rate algorithm, which utilizes curvature information for automatically tuning the learning rates. The information about the element-wise curvature of the loss function is estimated from the local statistics of the stochastic first order gradients. We further propose a new variance reduction technique to speed up the convergence. In our preliminary experiments with deep neural networks, we obtained better performance compared to the popular stochastic gradient algorithms.

16 citations

Proceedings Article
30 Apr 2020
TL;DR: The variational bandwidth bottleneck is proposed, which decides for each example on the estimated value of the privileged information before seeing it, and then accordingly chooses stochastically, whether to access the privileged input or not.
Abstract: In many applications, it is desirable to extract only the relevant information from complex input data, which involves making a decision about which input features are relevant. The information bottleneck method formalizes this as an information-theoretic optimization problem by maintaining an optimal tradeoff between compression (throwing away irrelevant input information), and predicting the target. In many problem settings, including the reinforcement learning problems we consider in this work, we might prefer to compress only part of the input. This is typically the case when we have a standard conditioning input, such as a state observation, and a ``privileged'' input, which might correspond to the goal of a task, the output of a costly planning algorithm, or communication with another agent. In such cases, we might prefer to compress the privileged input, either to achieve better generalization (e.g., with respect to goals) or to minimize access to costly information (e.g., in the case of communication). Practical implementations of the information bottleneck based on variational inference require access to the privileged input in order to compute the bottleneck variable, so although they perform compression, this compression operation itself needs unrestricted, lossless access. In this work, we propose the variational bandwidth bottleneck, which decides for each example on the estimated value of the privileged information before seeing it, i.e., only based on the standard input, and then accordingly chooses stochastically, whether to access the privileged input or not. We formulate a tractable approximation to this framework and demonstrate in a series of reinforcement learning experiments that it can improve generalization and reduce access to computationally costly information.

16 citations

Journal ArticleDOI
TL;DR: This paper designs a model architecture that can be trained under a proxy supervision obtained by combining standard image annotation with semantic part-based within-label relations (from WordNet), and is designed to model both object image to object label similarities, and object label to object part label similarities in a single joint system.
Abstract: Recently, large scale image annotation datasets have been collected with millions of images and thousands of possible annotations. Latent variable models, or embedding methods, that simultaneously learn semantic representations of object labels and image representations can provide tractable solutions on such tasks. In this work, we are interested in jointly learning representations both for the objects in an image, and the parts of those objects, because such deeper semantic representations could bring a leap forward in image retrieval or browsing. Despite the size of these datasets, the amount of annotated data for objects and parts can be costly and may not be available. In this paper, we propose to bypass this cost with a method able to learn to jointly label objects and parts without requiring exhaustively labeled data. We design a model architecture that can be trained under a proxy supervision obtained by combining standard image annotation (from ImageNet) with semantic part-based within-label relations (from WordNet). The model itself is designed to model both object image to object label similarities, and object label to object part label similarities in a single joint system. Experiments conducted on our combined data and a precisely annotated evaluation set demonstrate the usefulness of our approach.

16 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations