scispace - formally typeset
Search or ask a question
Author

Yotam Gingold

Bio: Yotam Gingold is an academic researcher from George Mason University. The author has contributed to research in topics: Palette (computing) & RGB color model. The author has an hindex of 19, co-authored 48 publications receiving 1059 citations. Previous affiliations of Yotam Gingold include New York University & Interdisciplinary Center Herzliya.


Papers
More filters
Journal ArticleDOI
01 Dec 2009
TL;DR: A system for 3D modeling of free-form surfaces from2D sketches that frees users to create 2D sketches from arbitrary angles using their preferred tool, which may include pencil and paper and the results of a user study comparing the approach to a conventional "sketch-rotate-sketches" workflow are presented.
Abstract: We present a system for 3D modeling of free-form surfaces from 2D sketches Our system frees users to create 2D sketches from arbitrary angles using their preferred tool, which may include pencil and paper A 3D model is created by placing primitives and annotations on the 2D image Our primitives are based on commonly used sketching conventions and allow users to maintain a single view of the model This eliminates the frequent view changes inherent to existing 3D modeling tools, both traditional and sketch-based, and enables users to match input to the 2D guide image Our annotations---same-lengths and angles, alignment, mirror symmetry, and connection curves---allow the user to communicate higher-level semantic information; through them our system builds a consistent model even in cases where the original image is inconsistent We present the results of a user study comparing our approach to a conventional "sketch-rotate-sketch" workflow

138 citations

Proceedings ArticleDOI
24 Nov 2014

117 citations

Journal ArticleDOI
TL;DR: A spectrum of approaches for formulating curvature operators for meshes exists, ranging from highly accurate but computationally expensive methods used in engineering applications to efficient but less accurate techniques popular in simulation for computer graphics.
Abstract: Discrete curvature and shape operators, which capture complete information about directional curvatures at a point, are essential in a variety of applications: simulation of deformable two-dimensional objects, variational modeling and geometric data processing. In many of these applications, objects are represented by meshes. Currently, a spectrum of approaches for formulating curvature operators for meshes exists, ranging from highly accurate but computationally expensive methods used in engineering applications to efficient but less accurate techniques popular in simulation for computer graphics. We propose a simple and efficient formulation for the shape operator for variational problems on general meshes, using degrees of freedom associated with normals. On the one hand, it is similar in its simplicity to some of the discrete curvature operators commonly used in graphics; on the other hand, it passes a number of important convergence tests and produces consistent results for different types of meshes and mesh refinement.

105 citations

Journal ArticleDOI
TL;DR: This paper proposes a method to model 3D objects from sketches by utilizing humans specifically for semantic tasks that are very simple for humans and extremely difficult for the machine, while utilizing the machine for tasks that is harder for humans.
Abstract: Modeling 3D objects from sketches is a process that requires several challenging problems including segmentation, recognition and reconstruction. Some of these tasks are harder for humans and some are harder for the machine. At the core of the problem lies the need for semantic understanding of the shape’s geometry from the sketch. In this paper we propose a method to model 3D objects from sketches by utilizing humans specifically for semantic tasks that are very simple for humans and extremely difficult for the machine, while utilizing the machine for tasks that are harder for humans. The user assists recognition and segmentation by choosing and placing specific geometric primitives on the relevant parts of the sketch. The machine first snaps the primitive to the sketch by fitting its projection to the sketch lines, and then improves the model globally by inferring geosemantic constraints that link the different parts. The fitting occurs in real-time, allowing the user to be only as precise as needed to have a good starting configuration for this non-convex optimization problem. We evaluate the accessibility of our approach with a user study.

84 citations

Journal ArticleDOI
01 Nov 2012
TL;DR: Algorithms and a user-interface for sketch-based 3D modeling that unify the modeling and rigging stages of the 3D character animation pipeline are introduced and users can freely pose and animate their shapes and characters while rapidly iterating on the base shape.
Abstract: The creation of a 3D model is only the first stage of the 3D character animation pipeline. Once a model has been created, and before it can be animated, it must be rigged. Manual rigging is laborious, and automatic rigging approaches are far from real-time and do not allow for incremental updates. This is a hindrance in the real world, where the shape of a model is often revised after rigging has been performed. In this paper, we introduce algorithms and a user-interface for sketch-based 3D modeling that unify the modeling and rigging stages of the 3D character animation pipeline. Our algorithms create a rig for each sketched part in real-time, and update the rig as parts are merged or cut. As a result, users can freely pose and animate their shapes and characters while rapidly iterating on the base shape. The rigs are compatible with the state-of-the-art character animation pipeline; they consist of a low-dimensional skeleton along with skin weights identifying the surface with bones of the skeleton.

64 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Proceedings Article
01 Jan 1989
TL;DR: A scheme is developed for classifying the types of motion perceived by a humanlike robot and equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented.
Abstract: A scheme is developed for classifying the types of motion perceived by a humanlike robot. It is assumed that the robot receives visual images of the scene using a perspective system model. Equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented. >

2,000 citations

Book
01 Jan 1991
TL;DR: In this paper, the Third Edition of the Third edition of Linear Systems: Local Theory and Nonlinear Systems: Global Theory (LTLT) is presented, along with an extended version of the second edition.
Abstract: Series Preface * Preface to the Third Edition * 1 Linear Systems * 2 Nonlinear Systems: Local Theory * 3 Nonlinear Systems: Global Theory * 4 Nonlinear Systems: Bifurcation Theory * References * Index

1,977 citations

Proceedings ArticleDOI
23 Feb 2013
TL;DR: This paper outlines a framework that will enable crowd work that is complex, collaborative, and sustainable, and lays out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.
Abstract: Paid crowd work offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale. But it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework. Can we foresee a future crowd workplace in which we would want our children to participate? This paper frames the major challenges that stand in the way of this goal. Drawing on theory from organizational behavior and distributed computing, as well as direct feedback from workers, we outline a framework that will enable crowd work that is complex, collaborative, and sustainable. The framework lays out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.

836 citations

Posted Content
TL;DR: In this paper, the authors outline a framework that will enable crowd work that is complex, collaborative, and sustainable, and lay out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.
Abstract: Paid crowd work offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale. But it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework. Can we foresee a future crowd workplace in which we would want our children to participate? This paper frames the major challenges that stand in the way of this goal. Drawing on theory from organizational behavior and distributed computing, as well as direct feedback from workers, we outline a framework that will enable crowd work that is complex, collaborative, and sustainable. The framework lays out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.

803 citations