scispace - formally typeset
Search or ask a question
Author

You Li

Other affiliations: Wuhan University
Bio: You Li is an academic researcher from University of Calgary. The author has contributed to research in topics: Inertial measurement unit & Inertial navigation system. The author has an hindex of 23, co-authored 70 publications receiving 1724 citations. Previous affiliations of You Li include Wuhan University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
26 Apr 2016-Sensors
TL;DR: An algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel- separation fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons is proposed.
Abstract: Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.

371 citations

Journal ArticleDOI
TL;DR: Two crowdsourcing-based WPSs are proposed to build the databases on handheld devices by using designed algorithms and an inertial navigation solution from a Trusted Portable Navigator (T-PN), and implement a simple MEMS-based sensors' solution.
Abstract: Current WiFi positioning systems (WPSs) require databases – such as locations of WiFi access points and propagation parameters, or a radio map – to assist with positioning. Typically, procedures for building such databases are time-consuming and labour-intensive. In this paper, two autonomous crowdsourcing systems are proposed to build the databases on handheld devices by using our designed algorithms and an inertial navigation solution from a Trusted Portable Navigator (T-PN). The proposed systems, running on smartphones, build and update the database autonomously and adaptively to account for the dynamic environment. To evaluate the performance of automatically generated databases, two improved WiFi positioning schemes (fingerprinting and trilateration) corresponding to these two database building systems, are also discussed. The main contribution of the paper is the proposal of two crowdsourcing-based WPSs that eliminate the various limitations of current crowdsourcing-based systems which (a) require a floor plan or GPS, (b) are suitable only for specific indoor environments, and (c) implement a simple MEMS-based sensors’ solution. In addition, these two WPSs are evaluated and compared through field tests. Results in different test scenarios show that average positioning errors of both proposed systems are all less than 5.75 m.

166 citations

Journal ArticleDOI
TL;DR: This paper proposes a dead-reckoning (DR)/WiFi fingerprinting/magnetic matching (MM) integration structure that uses off-the-shelf sensors in consumer portable devices and existing WiFi infrastructures and reduces the rate of mismatches by over 75.0% when compared with previous DR/WiFi/MM integration structures.

119 citations

Journal ArticleDOI
TL;DR: The PLAN systems are expected to be more intelligent and robust under the emergence of more advanced sensors, multi-platform/multi-device/ multi-sensor information fusion, self-learning systems, and the integration with artificial intelligence, 5G, IoT, and edge/fog computing.
Abstract: This paper reviews the state of the art and future trends of indoor Positioning, Localization, and Navigation (PLAN). It covers the requirements, the main players, sensors, and techniques for indoor PLAN. Other than the navigation sensors such as Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS), the environmental-perception sensors such as High-Definition map (HD map), Light Detection and Ranging (LiDAR), camera, the fifth generation of mobile network communication technology (5G), and Internet-of-Things (IoT) signals are becoming important aiding sensors for PLAN. The PLAN systems are expected to be more intelligent and robust under the emergence of more advanced sensors, multi-platform/multi-device/multi-sensor information fusion, self-learning systems, and the integration with artificial intelligence, 5G, IoT, and edge/fog computing.

96 citations

Journal ArticleDOI
TL;DR: A new algorithm that integrates inertial navigation system (INS) and pedestrian dead reckoning (PDR) to combine the advantages of both mechanizations for micro-electro-mechanical systems (MEMS) sensors in pedestrian navigation applications is proposed.
Abstract: Providing an accurate and practical navigation solution anywhere with portable devices, such as smartphones, is still a challenge, especially in environments where global navigation satellite systems (GNSS) signals are not available or are degraded. This paper proposes a new algorithm that integrates inertial navigation system (INS) and pedestrian dead reckoning (PDR) to combine the advantages of both mechanizations for micro-electro-mechanical systems (MEMS) sensors in pedestrian navigation applications. In this PDR/INS integration algorithm, a pseudo-velocity-vector, which is composed of the PDR-derived forward speed and zero lateral and vertical speeds from non-holonomic constraints (NHC), works as an update for the INS to limit the velocity errors. To further limit the drift of MEMS inertial sensors, trilateration-based WiFi positions with small variances are also selected as updates for the PDR/INS integrated system. The experiments illustrate that positioning error is decreased by 60%–75% by using the proposed PDR/INS integrated MEMS solution when compared with PDR. The positioning error is further decreased by 15%–55% if the proposed PDR/INS/WiFi integrated solution is implemented. The average accuracy of the proposed PDR/INS/WiFi integration algorithm achieves 4.5 m in indoor environments.

96 citations


Cited by
More filters
Proceedings Article
01 Jan 2007
TL;DR: In this paper, the Gaussian Process Latent Variable Model (GPLVM) is used to reconstruct a topological connectivity graph from a signal strength sequence, which can be used to perform efficient WiFi SLAM.
Abstract: WiFi localization, the task of determining the physical location of a mobile device from wireless signal strengths, has been shown to be an accurate method of indoor and outdoor localization and a powerful building block for location-aware applications. However, most localization techniques require a training set of signal strength readings labeled against a ground truth location map, which is prohibitive to collect and maintain as maps grow large. In this paper we propose a novel technique for solving the WiFi SLAM problem using the Gaussian Process Latent Variable Model (GPLVM) to determine the latent-space locations of unlabeled signal strength data. We show how GPLVM, in combination with an appropriate motion dynamics model, can be used to reconstruct a topological connectivity graph from a signal strength sequence which, in combination with the learned Gaussian Process signal strength model, can be used to perform efficient localization.

488 citations

Journal ArticleDOI
TL;DR: A thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost is undertaken.
Abstract: As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.

410 citations

Journal ArticleDOI
TL;DR: The autocalibration method as presented helps reduce the calibration error in wearable acceleration sensor data and improves comparability of physical activity measures across study locations.
Abstract: Wearable acceleration sensors are increasingly used for the assessment of free-living physical activity. Acceleration sensor calibration is a potential source of error. This study aims to describe and evaluate an autocalibration method to minimize calibration error using segments within the free-living records (no extra experiments needed). The autocalibration method entailed the extraction of nonmovement periods in the data, for which the measured vector magnitude should ideally be the gravitational acceleration (1 g); this property was used to derive calibration correction factors using an iterative closest-point fitting process. The reduction in calibration error was evaluated in data from four cohorts: UK (n = 921), Kuwait (n = 120), Cameroon (n = 311), and Brazil (n = 200). Our method significantly reduced calibration error in all cohorts (P 0.05). Temperature correction coefficients were highest for the z-axis, e.g., 19.6-mg offset per 5°C. Further, application of the autocalibration method had a significant impact on typical metrics used for describing human physical activity, e.g., in Brazil average wrist acceleration was 0.2 to 51% lower than uncalibrated values depending on metric selection (P < 0.01). The autocalibration method as presented helps reduce the calibration error in wearable acceleration sensor data and improves comparability of physical activity measures across study locations. Temperature ultization seems essential when temperature deviates substantially from the average temperature in the record but not for multiday summary measures.

391 citations

Journal ArticleDOI
26 Apr 2016-Sensors
TL;DR: An algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel- separation fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons is proposed.
Abstract: Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.

371 citations