scispace - formally typeset
Search or ask a question
Author

You Young Kim

Bio: You Young Kim is an academic researcher from Seoul National University. The author has contributed to research in topics: Asthma & Bronchial hyperresponsiveness. The author has an hindex of 28, co-authored 103 publications receiving 6184 citations. Previous affiliations of You Young Kim include Seoul National University Hospital & Ajou University.


Papers
More filters
Journal ArticleDOI
Jean Bousquet, N. Khaltaev, Alvaro A. Cruz1, Judah A. Denburg2, W. J. Fokkens3, Alkis Togias4, T. Zuberbier5, Carlos E. Baena-Cagnani6, Giorgio Walter Canonica7, C. van Weel8, Ioana Agache9, Nadia Aït-Khaled, Claus Bachert10, Michael S. Blaiss11, Sergio Bonini12, L.-P. Boulet13, Philippe-Jean Bousquet, Paulo Augusto Moreira Camargos14, K-H. Carlsen15, Y. Z. Chen, Adnan Custovic16, Ronald Dahl17, Pascal Demoly, H. Douagui, Stephen R. Durham18, R. Gerth van Wijk19, O. Kalayci19, Michael A. Kaliner20, You Young Kim21, Marek L. Kowalski, Piotr Kuna22, L. T. T. Le23, Catherine Lemière24, Jing Li25, Richard F. Lockey26, S. Mavale-Manuel26, Eli O. Meltzer27, Y. Mohammad28, J Mullol, Robert M. Naclerio29, Robyn E O'Hehir30, K. Ohta31, S. Ouedraogo31, S. Palkonen, Nikolaos G. Papadopoulos32, Gianni Passalacqua7, Ruby Pawankar33, Todor A. Popov34, Klaus F. Rabe35, J Rosado-Pinto36, G. K. Scadding37, F. E. R. Simons38, Elina Toskala39, E. Valovirta40, P. Van Cauwenberge10, De Yun Wang41, Magnus Wickman42, Barbara P. Yawn43, Arzu Yorgancioglu44, Osman M. Yusuf, H. J. Zar45, Isabella Annesi-Maesano46, E.D. Bateman45, A. Ben Kheder47, Daniel A. Boakye48, J. Bouchard, Peter Burney18, William W. Busse49, Moira Chan-Yeung50, Niels H. Chavannes35, A.G. Chuchalin, William K. Dolen51, R. Emuzyte52, Lawrence Grouse53, Marc Humbert, C. M. Jackson54, Sebastian L. Johnston18, Paul K. Keith2, James P. Kemp27, J. M. Klossek55, Désirée Larenas-Linnemann55, Brian J. Lipworth54, Jean-Luc Malo24, Gailen D. Marshall56, Charles K. Naspitz57, K. Nekam, Bodo Niggemann58, Ewa Nizankowska-Mogilnicka59, Yoshitaka Okamoto60, M. P. Orru61, Paul Potter45, David Price62, Stuart W. Stoloff63, Olivier Vandenplas, Giovanni Viegi, Dennis M. Williams64 
Federal University of Bahia1, McMaster University2, University of Amsterdam3, National Institutes of Health4, Charité5, Catholic University of Cordoba6, University of Genoa7, Radboud University Nijmegen8, Transilvania University of Brașov9, Ghent University10, University of Tennessee Health Science Center11, University of Naples Federico II12, Laval University13, Universidade Federal de Minas Gerais14, University of Oslo15, University of Manchester16, Aarhus University17, Imperial College London18, Erasmus University Rotterdam19, George Washington University20, Seoul National University21, Medical University of Łódź22, Hai phong University Of Medicine and Pharmacy23, Université de Montréal24, Guangzhou Medical University25, University of South Florida26, University of California, San Diego27, University of California28, University of Chicago29, Monash University30, Teikyo University31, National and Kapodistrian University of Athens32, Nippon Medical School33, Sofia Medical University34, Leiden University35, Leiden University Medical Center36, University College London37, University of Manitoba38, University of Helsinki39, Finnish Institute of Occupational Health40, National University of Singapore41, Karolinska Institutet42, University of Minnesota43, Celal Bayar University44, University of Cape Town45, Pierre-and-Marie-Curie University46, Tunis University47, University of Ghana48, University of Wisconsin-Madison49, University of British Columbia50, Georgia Regents University51, Vilnius University52, University of Washington53, University of Dundee54, University of Poitiers55, University of Mississippi56, Federal University of São Paulo57, German Red Cross58, Jagiellonian University Medical College59, Chiba University60, American Pharmacists Association61, University of Aberdeen62, University of Nevada, Reno63, University of North Carolina at Chapel Hill64
01 Apr 2008-Allergy
TL;DR: The ARIA guidelines for the management of allergic rhinitis and asthma are similar in both the 1999 ARIA workshop report and the 2008 Update as discussed by the authors, but the GRADE approach is not yet available.
Abstract: Allergic rhinitis is a symptomatic disorder of the nose induced after allergen exposure by an IgE-mediated inflammation of the membranes lining the nose. It is a global health problem that causes major illness and disability worldwide. Over 600 million patients from all countries, all ethnic groups and of all ages suffer from allergic rhinitis. It affects social life, sleep, school and work and its economic impact is substantial. Risk factors for allergic rhinitis are well identified. Indoor and outdoor allergens as well as occupational agents cause rhinitis and other allergic diseases. The role of indoor and outdoor pollution is probably very important, but has yet to be fully understood both for the occurrence of the disease and its manifestations. In 1999, during the Allergic Rhinitis and its Impact on Asthma (ARIA) WHO workshop, the expert panel proposed a new classification for allergic rhinitis which was subdivided into 'intermittent' or 'persistent' disease. This classification is now validated. The diagnosis of allergic rhinitis is often quite easy, but in some cases it may cause problems and many patients are still under-diagnosed, often because they do not perceive the symptoms of rhinitis as a disease impairing their social life, school and work. The management of allergic rhinitis is well established and the ARIA expert panel based its recommendations on evidence using an extensive review of the literature available up to December 1999. The statements of evidence for the development of these guidelines followed WHO rules and were based on those of Shekelle et al. A large number of papers have been published since 2000 and are extensively reviewed in the 2008 Update using the same evidence-based system. Recommendations for the management of allergic rhinitis are similar in both the ARIA workshop report and the 2008 Update. In the future, the GRADE approach will be used, but is not yet available. Another important aspect of the ARIA guidelines was to consider co-morbidities. Both allergic rhinitis and asthma are systemic inflammatory conditions and often co-exist in the same patients. In the 2008 Update, these links have been confirmed. The ARIA document is not intended to be a standard-of-care document for individual countries. It is provided as a basis for physicians, health care professionals and organizations involved in the treatment of allergic rhinitis and asthma in various countries to facilitate the development of relevant local standard-of-care documents for patients.

3,769 citations

Journal ArticleDOI
Jean Bousquet1, Holger J. Schünemann2, B. Samolinski3, Pascal Demoly  +233 moreInstitutions (127)
TL;DR: Ten years after the publication of the ARIA World Health Organization workshop report, it is important to make a summary of its achievements and identify the still unmet clinical, research, and implementation needs to strengthen the 2011 European Union Priority on allergy and asthma in children.
Abstract: Allergic rhinitis (AR) and asthma represent global health problems for all age groups. Asthma and rhinitis frequently coexist in the same subjects. Allergic Rhinitis and its Impact on Asthma (ARIA) was initiated during a World Health Organization workshop in 1999 (published in 2001). ARIA has reclassified AR as mild/moderate-severe and intermittent/persistent. This classification closely reflects patients' needs and underlines the close relationship between rhinitis and asthma. Patients, clinicians, and other health care professionals are confronted with various treatment choices for the management of AR. This contributes to considerable variation in clinical practice, and worldwide, patients, clinicians, and other health care professionals are faced with uncertainty about the relative merits and downsides of the various treatment options. In its 2010 Revision, ARIA developed clinical practice guidelines for the management of AR and asthma comorbidities based on the Grading of Recommendation, Assessment, Development and Evaluation (GRADE) system. ARIA is disseminated and implemented in more than 50 countries of the world. Ten years after the publication of the ARIA World Health Organization workshop report, it is important to make a summary of its achievements and identify the still unmet clinical, research, and implementation needs to strengthen the 2011 European Union Priority on allergy and asthma in children.

453 citations

Journal ArticleDOI
TL;DR: It is shown that neutrophilic inflammation and IFN-γ expression were higher in induced sputum from severe asthma patients than from mild to moderate asthmatics, and airway exposure levels of LPS induces different forms of asthma that are type 1 and type 2 asthma phenotypes by high and low LPS levels, respectively.
Abstract: Allergic asthma is characterized by airway inflammation initiated by adaptive immune responses to aeroallergens. Recent data suggest that severe asthma may be a different form of asthma rather than an increase in asthma symptoms and that innate immune responses to LPS can modulate adaptive immune responses to allergens. In this study, we evaluated the hypothesis that airway exposure to different doses of LPS induces different form of asthma. Our study showed that neutrophilic inflammation and IFN-gamma expression were higher in induced sputum from severe asthma patients than from mild to moderate asthmatics. Animal experiments indicated that allergen sensitization with low-dose LPS (0.1 microg) induced type 2 asthma phenotypes, i.e., airway hyperresponsiveness, eosinophilic inflammation, and allergen-specific IgE up-regulation. In contrast, allergen sensitization with high-dose LPS (10 microg) induced asthma phenotypes, i.e., airway hyperresponsiveness and noneosinophilic inflammation that were not developed in IFN-gamma-deficient mice, but unaffected in the absence of IL-4. During the allergen sensitization period, TNF-alpha expression was found to be enhanced by both low- and high-dose LPS, whereas IL-12 expression was only enhanced by high-dose LPS. Interestingly, the asthma phenotypes induced by low-dose LPS, but not by high-dose LPS, were completely inhibited in TNF-alpha receptor-deficient mice, whereas the asthma phenotypes induced by high-dose LPS were abolished in the homozygous null mutation of the STAT4 gene. These findings suggest that airway exposure levels of LPS induces different forms of asthma that are type 1 and type 2 asthma phenotypes by high and low LPS levels, respectively.

208 citations

Journal Article
TL;DR: Increase in signal intensities on the T1-weighted image reflect recent exposure to Mn, but not necessarily manganism, as well as environmental and biological monitoring, neurological examination, and MRI.
Abstract: Objectives: To clarify the clinical significance of increased signal intensities on T1 weighted magnetic resonance imaging (MRI) we performed a large-scale epidemiological study on asymptomatic manganese (Mn)-exposed workers with its focus on MRI. Methods: We randomly selected 121 male workers out ofa total of 750 workers including Mn-exposed, non-exposed manual, and non-exposed clerical workers in the factories. We studied environmental and biological monitoring, neurological examination, and MRI. Results: The proportion of workers with increased signal intensities among the exposed, the non-exposed manual workers, and the non-exposed clerical workers was 46.1%, 18.8%, and 0%, respectively. Especially, 73.5% of the welders showed increased signal intensities. In no subject, were clinical signs of manganism observed. The pallidal index correlated with blood Mn concentration. Conclusion: Increase in signal intensities on the T1-weighted image reflect recent exposure to Mn, but not necessarily manganism. At which increase of signal intensity, the progression of manganism from Mn exposure occurs, remains to be solved.

119 citations

Journal ArticleDOI
TL;DR: This data indicates that smoking and obesity are major predictors of asthma prevalence in adult populations, and smoking-related death in adults is a major cause of morbidity in adults with asthma.
Abstract: Summary Background Although asthma is a common cause of morbidity in adults, relatively few objectively measured population studies of asthma prevalence in adult populations have been conducted. Objective To evaluate the prevalence of asthma, based on both a questionnaire and methacholine bronchial provocation test, and to determine the risk factors of asthma prevalence in an adult population. Methods A total of 2467 adults, who were randomly selected from metropolitan urban, non-metropolitan urban and rural areas, responded to the modified ISAAC questionnaire, and underwent methacholine bronchial provocation tests and skin prick tests to locally common aeroallergens. Results The prevalence of current asthma based on the questionnaire and the methacholine challenge was 2.0% in adults younger than 40, 3.8% in 40- to 54-year-olds, 7.7% in 55- to 64-year-olds and 12.7% in those aged 65 or higher. For subjects of 55–64 years, active smoking was found to be significantly related with the prevalence of current asthma and bronchial hyper-responsiveness, although smoking was positively associated with percentage predictive value of forced expiratory volume of 1 s (FEV1). Conclusion The prevalence of current asthma is common among the elderly, and active smoking may play an important role in the development of asthma and bronchial hyper-responsiveness among the elderly.

116 citations


Cited by
More filters
Journal ArticleDOI
Jean Bousquet, N. Khaltaev, Alvaro A. Cruz1, Judah A. Denburg2, W. J. Fokkens3, Alkis Togias4, T. Zuberbier5, Carlos E. Baena-Cagnani6, Giorgio Walter Canonica7, C. van Weel8, Ioana Agache9, Nadia Aït-Khaled, Claus Bachert10, Michael S. Blaiss11, Sergio Bonini12, L.-P. Boulet13, Philippe-Jean Bousquet, Paulo Augusto Moreira Camargos14, K-H. Carlsen15, Y. Z. Chen, Adnan Custovic16, Ronald Dahl17, Pascal Demoly, H. Douagui, Stephen R. Durham18, R. Gerth van Wijk19, O. Kalayci19, Michael A. Kaliner20, You Young Kim21, Marek L. Kowalski, Piotr Kuna22, L. T. T. Le23, Catherine Lemière24, Jing Li25, Richard F. Lockey26, S. Mavale-Manuel26, Eli O. Meltzer27, Y. Mohammad28, J Mullol, Robert M. Naclerio29, Robyn E O'Hehir30, K. Ohta31, S. Ouedraogo31, S. Palkonen, Nikolaos G. Papadopoulos32, Gianni Passalacqua7, Ruby Pawankar33, Todor A. Popov34, Klaus F. Rabe35, J Rosado-Pinto36, G. K. Scadding37, F. E. R. Simons38, Elina Toskala39, E. Valovirta40, P. Van Cauwenberge10, De Yun Wang41, Magnus Wickman42, Barbara P. Yawn43, Arzu Yorgancioglu44, Osman M. Yusuf, H. J. Zar45, Isabella Annesi-Maesano46, E.D. Bateman45, A. Ben Kheder47, Daniel A. Boakye48, J. Bouchard, Peter Burney18, William W. Busse49, Moira Chan-Yeung50, Niels H. Chavannes35, A.G. Chuchalin, William K. Dolen51, R. Emuzyte52, Lawrence Grouse53, Marc Humbert, C. M. Jackson54, Sebastian L. Johnston18, Paul K. Keith2, James P. Kemp27, J. M. Klossek55, Désirée Larenas-Linnemann55, Brian J. Lipworth54, Jean-Luc Malo24, Gailen D. Marshall56, Charles K. Naspitz57, K. Nekam, Bodo Niggemann58, Ewa Nizankowska-Mogilnicka59, Yoshitaka Okamoto60, M. P. Orru61, Paul Potter45, David Price62, Stuart W. Stoloff63, Olivier Vandenplas, Giovanni Viegi, Dennis M. Williams64 
Federal University of Bahia1, McMaster University2, University of Amsterdam3, National Institutes of Health4, Charité5, Catholic University of Cordoba6, University of Genoa7, Radboud University Nijmegen8, Transilvania University of Brașov9, Ghent University10, University of Tennessee Health Science Center11, University of Naples Federico II12, Laval University13, Universidade Federal de Minas Gerais14, University of Oslo15, University of Manchester16, Aarhus University17, Imperial College London18, Erasmus University Rotterdam19, George Washington University20, Seoul National University21, Medical University of Łódź22, Hai phong University Of Medicine and Pharmacy23, Université de Montréal24, Guangzhou Medical University25, University of South Florida26, University of California, San Diego27, University of California28, University of Chicago29, Monash University30, Teikyo University31, National and Kapodistrian University of Athens32, Nippon Medical School33, Sofia Medical University34, Leiden University35, Leiden University Medical Center36, University College London37, University of Manitoba38, University of Helsinki39, Finnish Institute of Occupational Health40, National University of Singapore41, Karolinska Institutet42, University of Minnesota43, Celal Bayar University44, University of Cape Town45, Pierre-and-Marie-Curie University46, Tunis University47, University of Ghana48, University of Wisconsin-Madison49, University of British Columbia50, Georgia Regents University51, Vilnius University52, University of Washington53, University of Dundee54, University of Poitiers55, University of Mississippi56, Federal University of São Paulo57, German Red Cross58, Jagiellonian University Medical College59, Chiba University60, American Pharmacists Association61, University of Aberdeen62, University of Nevada, Reno63, University of North Carolina at Chapel Hill64
01 Apr 2008-Allergy
TL;DR: The ARIA guidelines for the management of allergic rhinitis and asthma are similar in both the 1999 ARIA workshop report and the 2008 Update as discussed by the authors, but the GRADE approach is not yet available.
Abstract: Allergic rhinitis is a symptomatic disorder of the nose induced after allergen exposure by an IgE-mediated inflammation of the membranes lining the nose. It is a global health problem that causes major illness and disability worldwide. Over 600 million patients from all countries, all ethnic groups and of all ages suffer from allergic rhinitis. It affects social life, sleep, school and work and its economic impact is substantial. Risk factors for allergic rhinitis are well identified. Indoor and outdoor allergens as well as occupational agents cause rhinitis and other allergic diseases. The role of indoor and outdoor pollution is probably very important, but has yet to be fully understood both for the occurrence of the disease and its manifestations. In 1999, during the Allergic Rhinitis and its Impact on Asthma (ARIA) WHO workshop, the expert panel proposed a new classification for allergic rhinitis which was subdivided into 'intermittent' or 'persistent' disease. This classification is now validated. The diagnosis of allergic rhinitis is often quite easy, but in some cases it may cause problems and many patients are still under-diagnosed, often because they do not perceive the symptoms of rhinitis as a disease impairing their social life, school and work. The management of allergic rhinitis is well established and the ARIA expert panel based its recommendations on evidence using an extensive review of the literature available up to December 1999. The statements of evidence for the development of these guidelines followed WHO rules and were based on those of Shekelle et al. A large number of papers have been published since 2000 and are extensively reviewed in the 2008 Update using the same evidence-based system. Recommendations for the management of allergic rhinitis are similar in both the ARIA workshop report and the 2008 Update. In the future, the GRADE approach will be used, but is not yet available. Another important aspect of the ARIA guidelines was to consider co-morbidities. Both allergic rhinitis and asthma are systemic inflammatory conditions and often co-exist in the same patients. In the 2008 Update, these links have been confirmed. The ARIA document is not intended to be a standard-of-care document for individual countries. It is provided as a basis for physicians, health care professionals and organizations involved in the treatment of allergic rhinitis and asthma in various countries to facilitate the development of relevant local standard-of-care documents for patients.

3,769 citations

Journal ArticleDOI
TL;DR: This systematic review and meta-analyses confirmed the findings of a previous study published in “Rhinitis and Asthma: Causes and Prevention, 2nd Ed.” (2015) as well as new findings of “Mechanisms of Respiratory Disease and Allergology,” which confirmed the role of EMTs in the development of these diseases.
Abstract: Authors Jan L. Brozek, MD, PhD – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada Jean Bousquet, MD, PhD – Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France, INSERM, CESP U1018, Respiratory and Environmental Epidemiology Team, France, and WHO Collaborating Center for Rhinitis and Asthma Carlos E. Baena-Cagnani, MD – Faculty of Medicine, Catholic University of Cordoba, Cordoba, Argentina Sergio Bonini, MD – Institute of Neurobiology and Molecular Medicine – CNR, Rome, Italy and Department of Medicine, Second University of Naples, Naples, Italy G. Walter Canonica, MD – Allergy & Respiratory Diseases, DIMI, Department of Internal Medicine, University of Genoa, Genoa, Italy Thomas B. Casale, MD – Division of Allergy and Immunology, Department of Medicine, Creighton University, Omaha, Nebraska, USA Roy Gerth van Wijk, MD, PhD – Section of Allergology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands Ken Ohta, MD, PhD – Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan Torsten Zuberbier, MD – Department of Dermatology and Allergy, Charite Universitatsmedizin Berlin, Berlin, Germany Holger J. Schunemann, MD, PhD, MSc – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada

3,368 citations

29 Jan 2015
TL;DR: The current state of the genetic dissection of complex traits is summarized in this paper, which describes the methods, limitations, and recent applications to biological problems, including linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses.
Abstract: Medical genetics was revolutionized during the 1980s by the application of genetic mapping to locate the genes responsible for simple Mendelian diseases. Most diseases and traits, however, do not follow simple inheritance patterns. Geneticists have thus begun taking up the even greater challenge of the genetic dissection of complex traits. Four major approaches have been developed: linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses. This article synthesizes the current state of the genetic dissection of complex traits—describing the methods, limitations, and recent applications to biological problems.

1,805 citations

Journal ArticleDOI
TL;DR: These are the most recent and currently the most systematically and transparently developed recommendations about the treatment of allergic rhinitis in adults and children and patients are encouraged to use these recommendations in their daily practice and to support their decisions.
Abstract: Background: Allergic rhinitis represents a global health problem affecting 10% to 20% of the population. The Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines have been widely used to treat the approximately 500 million affected patients globally. Objective: To develop explicit, unambiguous, and transparent clinical recommendations systematically for treatment of allergic rhinitis on the basis of current best evidence. Methods: The authors updated ARIA clinical recommendations in collaboration with Global Allergy and Asthma European Network following the approach suggested by the Grading of Recommendations Assessment, Development and Evaluation working group. Results: This article presents recommendations about the prevention of allergic diseases, the use of oral and topical medications, allergen specific immunotherapy, and complementary treatments in patients with allergic rhinitis as well as patients with both allergic rhinitis and asthma. The guideline panel developed evidence profiles for each recommendation and considered health benefits and harms, burden, patient preferences, and resource use, when appropriate, to formulate recommendations for patients, clinicians, and other health care professionals. Conclusion: These are the most recent and currently the most systematically and transparently developed recommendations about the treatment of allergic rhinitis in adults and children. Patients, clinicians, and policy makers are encouraged to use these recommendations in their daily practice and to support their decisions.

1,398 citations

Journal ArticleDOI
TL;DR: The results suggest that two distinct pathologic, physiologic, and clinical subtypes of severe asthma exist, with implications for further research and treatment.
Abstract: The mechanisms associated with the development of severe, corticosteroid (CS)-dependent asthma are poorly understood, but likely heterogenous. It was hypothesized that severe asthma could be divided pathologically into two inflammatory groups based on the presence or absence of eosinophils, and that the inflammatory subtype would be associated with distinct structural, physiologic, and clinical characteristics. Thirty-four severe, refractory CS-dependent asthmatics were evaluated with endobronchial biopsy, pulmonary function, allergy testing, and clinical history. Milder asthmatic and normal control subjects were also evaluated. Tissue cell types and subbasement membrane (SBM) thickness were evaluated immunohistochemically. Fourteen severe asthmatics [eosinophil ( 2 )] had nearly absent eosinophils ( , 2 SD from the normal mean). The remaining 20 severe asthmatics were categorized as eosinophil ( 1 ). Eosinophil ( 1 ) severe asthmatics had associated increases (p , 0.05) in lymphocytes (CD3 1 , CD4 1 , CD8 1 ), mast cells, and macrophages. Neutrophils were increased in severe asthmatics and not different between the groups. The SBM was significantly thicker in eosinophil ( 1 ) severe asthmatics than eosinophil ( 2 ) severe asthmatics and correlated with eosinophil numbers (r 5 0.50). Despite the absence of eosinophils and the thinner SBM, the FEV 1 was marginally lower in eosinophil ( 2 ) asthmatics (p 5 0.05) with no difference in bronchodilator response. The eosinophil ( 1 ) group (with a thicker SBM) had more intubations than the eosinophil ( 2 ) group (p 5 0.0004). Interestingly, this group also had a decreased FVC/slow vital capacity (SVC). These results suggest that two distinct pathologic, physiologic, and clinical subtypes of severe asthma exist, with implications for further research and treatment. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. AM J RESPIR CRIT CARE MED 1999;160:1001‐1008.

1,186 citations