scispace - formally typeset
Search or ask a question
Author

Youguang Guo

Bio: Youguang Guo is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Stator & Magnet. The author has an hindex of 44, co-authored 570 publications receiving 8173 citations. Previous affiliations of Youguang Guo include Huazhong University of Science and Technology & Jiangsu University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a high-frequency link multilevel cascaded medium-voltage converter is proposed, which generates multiple isolated and balanced dc supplies for the converter, which inherently minimizes the voltage imbalance and common mode issues.
Abstract: Recent advances in solid-state semiconductors have led to the development of medium-voltage power converters (e.g., 6-36 kV) which could obviate the need for the step-up transformers of renewable power generation systems. The modular multilevel cascaded converters have been deemed as strong contenders for the development of medium-voltage converters, but the converters require multiple isolated and balanced dc supplies. In this paper, a high-frequency link multilevel cascaded medium-voltage converter is proposed. The common high-frequency link generates multiple isolated and balanced dc supplies for the converter, which inherently minimizes the voltage imbalance and common mode issues. An 11-kV system is designed and analyzed taking into account the specified system performance, control complexity, cost, and market availability of the power semiconductors. To verify the feasibility of the proposed system, a scaled down 1.73-kVA laboratory prototype test platform with a modular five-level cascaded converter is developed and explored in this paper, which converts a 210 V dc (rectified generator voltage) into three-phase 1 kV rms 50 Hz ac. The experimental results are analyzed and discussed. It is expected that the proposed new technology will have great potential for future renewable generation systems and smart grid applications.

262 citations

Journal ArticleDOI
TL;DR: The simulation and experimental results prove that the proposed direct torque control for permanent-magnet synchronous machines is very simple and provides excellent steady-state response, quick dynamic performance, and strong robustness against external disturbance and control-parameter variations.
Abstract: In this paper, a modified direct torque control (DTC) for permanent-magnet synchronous machines, which enables important torque- and flux-ripple reduction by using voltage vectors with variable amplitude and angle, is proposed. In the proposed DTC, the amplitudes of torque and flux errors are differentiated and employed to regulate the amplitude and angle of the output voltage vectors online, which are finally synthesized by space-vector modulation (SVM). Two simple formulas are developed to derive the amplitude and angle of the commanding voltage vectors from the errors of torque and flux only. The conventional switching table and hysteresis controllers are eliminated, and a fixed switching frequency is obtained with the help of SVM. Stator flux is estimated from an improved voltage model, which is based on a low-pass filter with compensations of the amplitude and phase. The proposed DTC is comparatively investigated with the existing SVM-DTC from the aspects of theory analysis, computer simulation, and experimental validation. The simulation and experimental results prove that the proposed DTC is very simple and provides excellent steady-state response, quick dynamic performance, and strong robustness against external disturbance and control-parameter variations.

187 citations

Journal ArticleDOI
TL;DR: A robust approach based on the technique of design for six sigma is presented for the system-level design optimization of drive systems to improve the reliability and quality of products in batch production in this work.
Abstract: A system-level design optimization method under the framework of a deterministic approach was presented for electrical drive systems in our previous work, in which not only motors but also the integrated control schemes were designed and optimized to achieve good steady and dynamic performances. However, there are many unavoidable uncertainties (noise factors) in the industrial manufacturing process, such as material characteristics and manufacturing precision. These will result in big fluctuations for the product's reliability and quality in mass production, which are not investigated in the deterministic approach. Therefore, a robust approach based on the technique of design for six sigma is presented for the system-level design optimization of drive systems to improve the reliability and quality of products in batch production in this work. Meanwhile, two system-level optimization frameworks are presented for the proposed method, namely, single-level (only at the system level) and multilevel frameworks. Finally, a drive system is investigated as an example, and detailed results are presented and discussed. It can be found that the reliability and quality levels of the investigated drive system have been greatly increased by using the proposed robust approach.

176 citations

Journal ArticleDOI
TL;DR: It is found that the proposed method can provide optimal design schemes with a better performance, such as smaller torque ripple and lower power loss for the investigated IPMSM, while the needed computation cost is reduced significantly.
Abstract: The multiobjective optimization design of interior permanent magnet synchronous motors (IPMSMs) is a challenge due to the high dimension and huge computation cost of finite element analysis. This article presents a new multilevel optimization strategy for efficient multiobjective optimization of an IPMSM. To determine the multilevel optimization strategy, Pearson correlation coefficient analysis and cross-factor variance analysis techniques are employed to evaluate the correlations of design parameters and optimization objectives. A three-level optimization structure is obtained for the investigated IPMSM based on the analysis results, and different optimization parameters and objectives are assigned to different levels. To improve the optimization efficiency, the Kriging model is employed to approximate the finite element analysis for the multiobjective optimization in each level. It is found that the proposed method can provide optimal design schemes with a better performance, such as smaller torque ripple and lower power loss for the investigated IPMSM, while the needed computation cost is reduced significantly. Finally, experimental results based on a prototype are provided to validate the effectiveness of the proposed optimization method. The proposed method can be applied for the efficient multiobjective optimization of other electrical machines with high dimensions.

172 citations

Journal ArticleDOI
10 Dec 2002
TL;DR: In this paper, the authors compared two types of 3D flux electrical machines with soft magnetic composite (SMC) cores, namely claw pole and transverse flux machines, for the computation of some important parameters and optimization of the machine structures.
Abstract: This paper compares two types of three-dimensional (3D) flux electrical machines with soft magnetic composite (SMC) cores, namely claw pole and transverse flux machines. 3D electromagnetic field analysis is conducted for the computation of some important parameters and optimization of the machine structures. An equivalent electric circuit is derived to calculate the machine performances. The analysis methods are validated by experimental results of a single phase claw pole permanent magnet machine with a SMC core. Useful conclusions are drawn from the evaluation and comparison of two machines with soft magnetic composite cores.

164 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2016

1,633 citations

01 Jan 1992
TL;DR: In this paper, a multilevel commutation cell is introduced for high-voltage power conversion, which can be applied to either choppers or voltage-source inverters and generalized to any number of switches.
Abstract: The authors discuss high-voltage power conversion. Conventional series connection and three-level voltage source inverter techniques are reviewed and compared. A novel versatile multilevel commutation cell is introduced: it is shown that this topology is safer and more simple to control, and delivers purer output waveforms. The authors show how this technique can be applied to either choppers or voltage-source inverters and generalized to any number of switches.<>

1,202 citations

Journal ArticleDOI
TL;DR: A review of the magnetic properties, characteristics, processing and applications of soft magnetic composite materials is presented in this paper, where the authors describe soft magnetic composites (SMCs) as ferromagnetic powder particles surrounded by an electrical insulating film.

801 citations

Journal ArticleDOI
28 Feb 2011-Sensors
TL;DR: An overview of the fundamentals and main variables of eddy current testing is included, and the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems are described.
Abstract: Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

683 citations