scispace - formally typeset
Search or ask a question
Author

Younan Xia

Bio: Younan Xia is an academic researcher from The Wallace H. Coulter Department of Biomedical Engineering. The author has contributed to research in topics: Nanocages & Nanowire. The author has an hindex of 216, co-authored 943 publications receiving 175757 citations. Previous affiliations of Younan Xia include Washington University in St. Louis & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, polystyrene microspheres containing both an oxygen-sensitive platinum porphyrin luminescence and a pressure-insensitive silicon polysilicon polymorphin luminecence are prepared in high yield.
Abstract: Polystyrene microspheres containing both an oxygen-sensitive platinum porphyrin luminescence and a pressure-insensitive silicon porphyrin luminescence are prepared in high yield. The ratio of these two luminescences responds reversibly in aerodynamic flows over a wide dynamic range of oxygen concentrations, with a response time of <10 ms. These microspheres have been used in a non-intrusive imaging method to potentially obtain the pressure distributions in three-dimensional aerodynamic flows.

60 citations

Journal ArticleDOI
TL;DR: A review of surface plasmon resonance, optical sensing methods, and surfaceenhanced Raman spectroscopy can be found in this paper, with a focus on propagation and localized surface plasmons.
Abstract: Plasmons (quantized, collective oscillations of electrons) have helped to advance methods of chemical analysis in recent decades. Propagating and localized surface plasmons are especially being used in chemical applications and are the focus of this review. The coverage includes the techniques of surface plasmon resonance, optical sensing methods, and surface-enhanced Raman spectroscopy. The frequencies of specific plasmons depend greatly on the structure of the material in which the plasmons reside. Some of these techniques are now available in the chemistry classroom.

60 citations

Journal ArticleDOI
27 Aug 2012-PLOS ONE
TL;DR: The results suggest that PAT is a complementary tool to conventional optical fluorescence imaging of reporter genes for linking biological studies from the microscopic to the macroscopic scales.
Abstract: Photoacoustic tomography (PAT) is a molecular imaging technology. Unlike conventional reporter gene imaging, which is usually based on fluorescence, photoacoustic reporter gene imaging relies only on optical absorption. This work demonstrates several key merits of PAT using lacZ, one of the most widely used reporter genes in biology. We show that the expression of lacZ can be imaged by PAT as deep as 5.0 cm in biological tissue, with resolutions of ∼1.0 mm and ∼0.4 mm in the lateral and axial directions, respectively. We further demonstrate non-invasive, simultaneous imaging of a lacZ-expressing tumor and its surrounding microvasculature in vivo by dual-wavelength acoustic-resolution photoacoustic microscopy (AR-PAM), with a lateral resolution of 45 µm and an axial resolution of 15 µm. Finally, using optical-resolution photoacoustic microscopy (OR-PAM), we show intra-cellular localization of lacZ expression, with a lateral resolution of a fraction of a micron. These results suggest that PAT is a complementary tool to conventional optical fluorescence imaging of reporter genes for linking biological studies from the microscopic to the macroscopic scales.

60 citations

Journal ArticleDOI
TL;DR: In this article, the spatial distribution and temporal proliferation of cells inside 3D porous scaffolds with thicknesses over 1 mm were investigated using photoacoustic microscopy (PAM) images, and the number of cells in the scaffold was quantitatively measured from the as-obtained volumetric information.

60 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the problem of most types of cells cannot be imaged and quantified by PAM due to the lack of an absorption-based contrast mechanism could be solved by employing 1-(4,5-dimethylthiazol-2-yl)-3, 5-diphenylformazan (MTT formazan), a cellular metabolite of 3-dimethyltetrazolium bromide, as the contrast agent.
Abstract: Photoacoustic microscopy (PAM) is a powerful imaging modality that can generate high-resolution, three-dimensional (3D) images non-invasively. However, most types of cells cannot be imaged and quantified by PAM due to the lack of an absorption-based contrast mechanism. Here we demonstrate that this problem could be solved by employing 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT formazan), a cellular metabolite of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), as the contrast agent. The as-formed MTT formazan crystals inside the cells have a strong absorption in the spectral region of 500-700 nm, and are generally nontoxic. It could serve as a superb contrast agent for PAM in imaging various types of cells cultured on two-dimensional (2D) substrates and in 3D porous scaffolds. This contrast mechanism is general, and can be applied to essentially all types of metabolically active cells including stem cells and tumor cells, which would be very useful for a number of biological and biomedical applications.

60 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations