scispace - formally typeset
Search or ask a question
Author

Younan Xia

Bio: Younan Xia is an academic researcher from The Wallace H. Coulter Department of Biomedical Engineering. The author has contributed to research in topics: Nanocages & Nanowire. The author has an hindex of 216, co-authored 943 publications receiving 175757 citations. Previous affiliations of Younan Xia include Washington University in St. Louis & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported a simple route to the synthesis of such nanocrystals by selectively growing them from the vertices of Pd icosahedral seeds, and the success of this synthesis critically depends on the introduction of Br- ions to slow the reduction kinetics of the Pt(II) precursor while limiting the surface diffusion of Pt adatoms by conducting the synthesis at 30 °C.
Abstract: Platinum nanocrystals featuring a multiply twinned structure and uniform sizes below 5 nm are superb catalytic materials, but it is difficult to synthesize such particles owing to the high twin-boundary energy (166 mJ/m2) of Pt. Here, we report a simple route to the synthesis of such nanocrystals by selectively growing them from the vertices of Pd icosahedral seeds. The success of this synthesis critically depends on the introduction of Br- ions to slow the reduction kinetics of the Pt(II) precursor while limiting the surface diffusion of Pt adatoms by conducting the synthesis at 30 °C. Owing to the small size and multiply twinned structure of Pt dots, the as-obtained Pd-Pt nanocrystals show remarkably enhanced activity and durability toward oxygen reduction, with a mass activity of 1.23 A mg-1Pt and a specific activity of 0.99 mA cm-2Pt, which are 8.2 and 4.5 times as high as those of the commercial Pt/C.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the structure and chemistry characteristics of the shell layer in the core-shell cubic and core-frame concave Pd-Pt nanocrystals have been investigated at the atomic scale to reveal the deposition and growth mechanism of Pt adatoms on to Pd cubic seeds under various conditions.
Abstract: Pd–Pt core–shell/frame bimetallic nanocrystal has attracted great interest in the applications of catalysis, plasmonics, and electronics. Controlling the shape, morphology, and chemistry of the outer Pt layer has been widely accepted as a critical factor to the realization of these applications. In this study, we provide a comprehensive study on the atomic structures, composition distribution, and 3D morphology of the shell layer in the bimetallic Pd–Pt nanocrystal with core–shell cubic and core–frame concave structures by using aberration-corrected high angle angular dark field–scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, and electron tomography. The structure and chemistry characteristics of the shell layer in the core–shell cubic and core–frame concave Pd–Pt nanocrystals have been investigated at the atomic scale to reveal the deposition and growth mechanism of Pt adatoms on to Pd cubic seeds under various conditions. In core–shell Pd–Pt cubic nanocrystals, the most ...

26 citations

Journal ArticleDOI
TL;DR: This report highlights both preclinical and translational applications of electrospun nanofibers and bioprinted constructs presented at the 2019 International Conference on Electrospinning, together with some perspectives on their future development.
Abstract: Over the past two decades, electrospun nanofibers have been actively explored for a range of applications, including those related to biomedicine, environmental science, energy harvesting, catalysis, photonics, and electronics. Regarding biomedical applications, one can readily produce nanofiber-based scaffolds with controlled compositions, structures, alignments, and functions by varying the material, design of collector, number of spinnerets, and electrospinning parameters. This report highlights both preclinical and translational applications of electrospun nanofibers and bioprinted constructs presented at the 2019 International Conference on Electrospinning, together with some perspectives on their future development.

26 citations

Journal ArticleDOI
TL;DR: Rogers et al. as mentioned in this paper showed that the scattering effect is so strong that scalar theory is no longer adequate: a bright line was found adjacent to the dark line previously predicted by the scalar theories, and the widths of both lines were found to be insensitive to the refractive index of the photoresist.
Abstract: Rigorous electromagnetic theory has been used to optimize elastomeric phase masks for generating sub-100-nm parallel lines by means of near-field photolithography J. A. Rogers et al., Appl. Phys. Lett. 70, 2658 (1997). In the near-field region, the scattering effect is so strong that the scalar theory is no longer adequate: A bright line was found adjacent to the dark line previously predicted by the scalar theory, and the widths of both lines were found to be insensitive to the refractive index of the photoresist. The simulation results are in good agreement with experimental studies, which showed that the bright and dark lines could be used to generate trenches and lines in a positive-tone photoresist by controlling the exposure time. Our simulations also indicate that parallel lines as small as 50 nm can be generated by adjusting the parameters of the phase mask.

26 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations