scispace - formally typeset
Search or ask a question
Author

Younan Xia

Bio: Younan Xia is an academic researcher from The Wallace H. Coulter Department of Biomedical Engineering. The author has contributed to research in topics: Nanocages & Nanowire. The author has an hindex of 216, co-authored 943 publications receiving 175757 citations. Previous affiliations of Younan Xia include Washington University in St. Louis & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multilayer supermolecular multilayers with high levels of compositional and structural complexities have been fabricated with an example that involves formation of stable host-guest complexes from bolaamphiphiles and cyclodextrins, followed by sequential build-up of multilayered films by these complexes in combination with anionic polystyrene sulfonate polymer chains.
Abstract: Supermolecular multilayers with high levels of compositional and structural complexities have been fabricated with an example that involves formation of stable host–guest complexes from bolaamphiphiles and cyclodextrins, followed by sequential build-up of multilayered films by these complexes in combination with anionic polystyrene sulfonate polymer chains.

23 citations

Journal ArticleDOI
TL;DR: It is established that the adsorption of bovine serum albumin (BSA) onto nanofibers is a time- and concentration-dependent process and a simple and versatile method for generating gradients of bioactive proteins on nanofiber mats is reported.
Abstract: Electrospun nanofibers are widely used in tissue engineering owing to their capability to mimic the structures and architectures of various types of extracellular matrices. However, it has been difficult to incorporate a biochemical cue into the physical cue provided by the nanofibers. Here we report a simple and versatile method for generating gradients of bioactive proteins on nanofiber mats. We establish that the adsorption of bovine serum albumin (BSA) onto nanofibers is a time- and concentration-dependent process. By linearly increasing the volume of BSA solution introduced into a container, a gradient in BSA is readily generated across the length of a vertically oriented strip of nanofibers. Next, the bare regions uncovered by BSA can be filled with the bioactive protein of interest. In demonstrating the potential application, we examine the outgrowth of neurites from dorsal root ganglion (DRG) isolated from chick embryos and then seeded on aligned polycaprolactone nanofibers covered by nerve growth factor (NGF) with a uniform coverage or in a gradient. In the case of uniform coverage, the neurites extending from DRG show essentially the same length on either side of the DRG cell mass. For the sample with a gradient in NGF, the neurites extending along the gradient (i.e., increase of NGF concentration) were significantly longer than the neurites extending against the gradient.

23 citations

Journal ArticleDOI
TL;DR: ES-derived, EGS-induced FLK-1+ hemangioblasts, when codelivered with mesenchymal stem cells as spheroids, were protected from apoptosis and generated functional endothelial cells and SMCs in ischemic mouse hindlimbs, resulting in improved blood perfusion and limb salvage.
Abstract: The fetal liver kinase 1 (FLK-1)+ hemangioblast can generate hematopoietic, endothelial, and smooth muscle cells (SMCs). ER71/ETV2, GATA2, and SCL form a core transcriptional network in hemangioblast development. Transient coexpression of these three factors during mesoderm formation stage in mouse embryonic stem cells (ESCs) robustly enhanced hemangioblast generation by activating bone morphogenetic protein (BMP) and FLK-1 signaling while inhibiting phosphatidylinositol 3-kinase, WNT signaling, and cardiac output. Moreover, etsrp, gata2, and scl inhibition converted hematopoietic field of the zebrafish anterior lateral plate mesoderm to cardiac. FLK-1+ hemangioblasts generated by transient coexpression of the three factors (ER71-GATA2-SCL [EGS]-induced FLK-1+) effectively produced hematopoietic, endothelial, and SMCs in culture and in vivo. Importantly, EGS-induced FLK-1+ hemangioblasts, when codelivered with mesenchymal stem cells as spheroids, were protected from apoptosis and generated functional endothelial cells and SMCs in ischemic mouse hindlimbs, resulting in improved blood perfusion and limb salvage. ESC-derived, EGS-induced FLK-1+ hemangioblasts could provide an attractive cell source for future hematopoietic and vascular repair and regeneration.

23 citations

Journal ArticleDOI
TL;DR: In this paper, a monolayer of thermally annealed ZnO sub-microrod rods was synthesized under the condition of a limited injection of Zn divalent ions into an aqueous solution of hexamethylenetetetramine at 85 °C.
Abstract: Highly uniform mono-dispersed ZnO sub-microrods were synthesized under the condition of a limited injection of Zn divalent ions into an aqueous solution of hexamethylenetetramine at 85 °C. The mechanisms governing the initial seed formation and growth of the ZnO sub-microrods were revealed as an oriented aggregation and classical growth, respectively, from an analytic observation with a high-resolution transmission electron microscope. To demonstrate the capability and possibility of forming uniform microrods for electronic applications, a monolayer of thermally annealed rods was produced on a flexible substrate.

23 citations

Journal ArticleDOI
10 Sep 2008-Langmuir
TL;DR: The use of methoxy-poly(ethylene glycol) silane (MPEG-sil) as a linker molecule for the synthesis of silica-coated nanoparticles by the Stöber method represents a new approach for the surface modification with silica coating of monodisperse nanoparticles synthesized from nonhydrolytic solutions and can potentially have a broad ramification in the development of water-dispersible nanoparticles for biological applications.
Abstract: This paper describes the use of methoxy-poly(ethylene glycol) silane (MPEG-sil) as a linker molecule for the synthesis of silica-coated nanoparticles by the Stober method. While short alkane chain-based siloxanes including (acryloxypropyl)trimethoxysilane and 3-methacryloxypropyl-trimethoxysilane are popular molecules used in surface modification, they are not efficient for the silica coating of nanoparticles synthesized from organic solvents containing long carbon chain carboxylic acids or amines as capping agents. Here, we report the utilization of MPEG-sil to bridge this gap. Our approach is based on a two-phase system, in which ligand exchange takes place in a hydrophobic environment and the surface modification with silica is conducted in an ethanol−water mixture. Our results show that this two-phased approach was effective to coat monodisperse Fe2O3 nanoparticles capped with oleic acid and Ag nanoparticles capped with oleylamine with uniform SiO2 shells. The process was also demonstrated for double-...

23 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations