scispace - formally typeset
Search or ask a question
Author

Younan Xia

Bio: Younan Xia is an academic researcher from The Wallace H. Coulter Department of Biomedical Engineering. The author has contributed to research in topics: Nanocages & Nanowire. The author has an hindex of 216, co-authored 943 publications receiving 175757 citations. Previous affiliations of Younan Xia include Washington University in St. Louis & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the morphology and porosity of the resultant PPy coatings could be manipulated and fine-tuned by adjusting at least three parameters: the concentration of monomer, the polymerization time, and the addition of poly(vinyl pyrrolidone).
Abstract: Polystyrene (PS) hollow spheres containing a hole on the surface were used as templates to fabricate double-shelled polypyrrole (PPy) hollow particles with a unique structure similar to that of a thermal bottle. Thanks to the hole on the surface, the monomer and initiator could easily and quickly diffuse into the interior of the PS hollow sphere to generate uniform PPy coatings on both the inner and outer surfaces of the hollow template. When the PS template was selectively removed with tetrahydrofuran, we obtained a double-shelled hollow particle with a structure resembling that of a thermal bottle. We also demonstrated that the morphology and porosity of the resultant PPy coatings could be manipulated and fine-tuned by adjusting at least three parameters: the concentration of monomer, the polymerization time, and the addition of poly(vinyl pyrrolidone).

20 citations

Journal ArticleDOI
TL;DR: A versatile integrated analyzer with a flow-programmed injection strategy and multiwavelength detection is described with applications toward sampling, flow injection analysis, and capillary separations.
Abstract: A versatile integrated analyzer with a flow-programmed injection strategy and multiwavelength detection is described with applications toward sampling, flow injection analysis, and capillary separations. Continuous near-real-time sampling is a major benefit of the flow-programmed injection technique. Injection volumes ranging from 250 pL to several microliters were made without electrophoretic flow. Multiwavelength grating light reflection spectroscopy (GLRS) and transmission absorbance spectroscopy were performed simultaneously in a detection volume of 150 pL. The utility of these detection methods for refractive index (RI) and absorbance detection in capillary channels is demonstrated through analysis of salt, indicator, and dyes. GLRS is a unique, selective, and path-length-independent technique for probing RI, absorbance, and other optical properties. A limit of detection (LOD) of 170 μM was achieved for GLRS interferometric detection of FD&C Red #3, which corresponded to 2.6 fmol of analyte in the 15...

20 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the synthesis of Rh nanocrystals with different shapes by controlling the kinetics involved in the growth of preformed Rh cubic seeds, which can be obtained from the same cubic seeds under suitable reduction kinetics for the precursor.
Abstract: We report the synthesis of Rh nanocrystals with different shapes by controlling the kinetics involved in the growth of preformed Rh cubic seeds. Specifically, Rh nanocrystals with cubic, cuboctahedral, and octahedral shapes can all be obtained from the same cubic seeds under suitable reduction kinetics for the precursor. The success of such a synthesis also relies on the use of a halide-free precursor to avoid oxidative etching, as well as the involvement of a sufficiently high temperature to remove Br- ions from the seeds while ensuring adequate surface diffusion. The availability of Rh nanocrystals with cubic and octahedral shapes allows for an evaluation of the facet dependences of their thermal and catalytic properties. The data from in situ electron microscopy studies indicate that the cubic and octahedral Rh nanocrystals can keep their original shapes up to 700 and 500 °C, respectively. When tested as catalysts for hydrazine decomposition, the octahedral nanocrystals exhibit almost 4-fold enhancement in terms of H2 selectivity relative to the cubic counterpart. As for ethanol oxidation, the order is reversed, with the cubic nanocrystals being about three times more active than the octahedral sample.

20 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations