scispace - formally typeset
Search or ask a question
Author

Younan Xia

Bio: Younan Xia is an academic researcher from The Wallace H. Coulter Department of Biomedical Engineering. The author has contributed to research in topics: Nanocages & Nanowire. The author has an hindex of 216, co-authored 943 publications receiving 175757 citations. Previous affiliations of Younan Xia include Washington University in St. Louis & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
16 Nov 2008-Langmuir
TL;DR: Results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.
Abstract: Electrospinning was employed to fabricate fibrous scaffolds of poly(epsilon-caprolactone) in the form of nonwoven mats. The surfaces of the fibers were then coated with gelatin through layer-by-layer self-assembly, followed by functionalization with a uniform coating of bonelike calcium phosphate by mineralization in the 10 times concentrated simulated body fluid for 2 h. Transmission electron microscopy, water contact angle, and scanning electron microscopy measurements confirmed the presence of gelatin and calcium phosphate coating layers, and X-ray diffraction results suggested that the deposited mineral phase was a mixture of dicalcium phosphate dehydrate (a precursor to apatite) and apatite. It was also demonstrated that the incorporation of gelatin promoted nucleation and growth of calcium phosphate. The porous scaffolds could mimic the structure, composition, and biological function of bone extracellular matrix. It was found that the preosteoblastic MC3T3-E1 cells attached, spread, and proliferated well with a flat morphology on the mineralized scaffolds. The proliferation rate of the cells on the mineralized scaffolds was significantly higher (by 1.9-fold) than that on the pristine fibrous scaffolds after culture for 7 days. These results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.

234 citations

Journal ArticleDOI
TL;DR: These high- faceted Pt nanocrystals with a large number of interconnected arms in a quasi-octahedral shape were tested as electrocatalysts for the oxygen reduction reaction in a proton exchange membrane fuel cell and exhibited improved specific activity and durability compared to commercial Pt/C catalyst.
Abstract: Highly faceted Pt nanocrystals with a large number of interconnected arms in a quasi-octahedral shape were synthesized simply by reducing H2PtCl6 precursor with poly(vinyl pyrrolidone) in aqueous solutions containing a trace amount of FeCl3. The iron species (Fe3+ or Fe2+) play a key role in inducing the formation of the multioctahedral structure by decreasing the concentration of Pt atoms and keeping a low concentration for the Pt seeds during the reaction. This condition favors the overgrowth of Pt seeds along their corners and thus the formation of multiarmed nanocrystals. Electron microscopy studies revealed that the multioctahedral Pt nanocrystals exhibit a large number of edge, corner, and surface step atoms. The size of the multioctahedral Pt nanocrystals can be controlled by varying the concentration of FeCl3 added to the reaction and/or the reaction temperature. These multioctahedral Pt nanocrystals were tested as electrocatalysts for the oxygen reduction reaction in a proton exchange membrane fu...

234 citations

Journal ArticleDOI
09 Sep 2011-ACS Nano
TL;DR: It is found that the rate of galvanic replacement and the rates of coreduction played important roles in controlling the morphology of resultant Pd-Pt alloy nanocages, which exhibited both enhanced activity and selectivity for the preferential oxidation (PROX) of CO in excess hydrogen than those of Pd nanocubes and the commercial Pt/C.
Abstract: This article describes a new method for the facile synthesis of Pd–Pt alloy nanocages with hollow interiors and porous walls by using Pd nanocubes as sacrificial templates. Differing from our previous work (Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. Synthesis of Pd-Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc.2011, 133, 6078–6079), we complemented the galvanic replacement (between Pd nanocubes and PtCl42–) with a coreduction process (for PdCl42– from the galvanic reaction and PtCl42– from the feeding) to generate Pd–Pt alloy nanocages in one step. We found that the rate of galvanic replacement (as determined by the concentrations of Br– and PtCl42– and temperature) and the rates of coreduction (as determined by the type of reductant and temperature) played important roles in controlling the morphology of resultant Pd–Pt alloy nanocages. The Pd–Pt nanocages ex...

233 citations

Journal ArticleDOI
TL;DR: In this article, a procedure that uses opaline arrays of spherical particles (with diameters ≥100 nm) as templates to fabricate porous membranes having three-dimensional interconnected networks of air balls was described.
Abstract: This paper describes a procedure that uses opaline arrays of spherical particles (with diameters ≥100 nm) as templates to fabricate porous membranes having three-dimensional interconnected networks of air balls. An aqueous dispersion of monodispersed polystyrene (or silica) beads was injected into a specially designed cell and assembled into an opaline array under external gas pressure and sonication. After drying, the void spaces among the spheres were filled with a liquid precursor such as a UV-curable (or thermally cross-linkable) prepolymer or a sol−gel solution. Subsequent solidification of the precursor and dissolution of the particles produced a well-defined porous membrane having a complex, three-dimensional architecture of air balls interconnected by a number of small circular “windows”. The porous structure of this kind of membrane can be easily tailored by using colloidal particles with different sizes: when spherical particles of diameter D are used, the dimension of air balls in the bulk is ...

233 citations

01 Aug 2011
TL;DR: The ORR activity of Pd nanocubes was one order of magnitude higher than that of PD octahedra, and comparable to that of the state-of-the-art Pt catalysts.
Abstract: We have synthesized sub-10 nm Pd cubic and octahedral nanocrystals and then evaluated their activities towards oxygen reduction reaction (ORR). The ORR activity of Pd nanocubes was one order of magnitude higher than that of Pd octahedra, and comparable to that of the state-of-the-art Pt catalysts.

233 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations