scispace - formally typeset
Search or ask a question
Author

Younan Xia

Bio: Younan Xia is an academic researcher from The Wallace H. Coulter Department of Biomedical Engineering. The author has contributed to research in topics: Nanocages & Nanowire. The author has an hindex of 216, co-authored 943 publications receiving 175757 citations. Previous affiliations of Younan Xia include Washington University in St. Louis & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a study on superhydrophobic silica surfaces based on roughness created by assembling different nanostructured materials was reported, where four different surface structures were created on a silica base material, which was subsequently covered with a self-assembled monolayer of tridecafluoro-1,1,2,2- tetrahydrooctyldimethylchlorosilane (TFCS).
Abstract: A study on superhydrophobic silica surfaces based on roughness created by assembling different nanostructured materials was reported. Four different surface structures were created on a silica base material, which was subsequently covered with a self-assembled monolayer of tridecafluoro-1,1,2,2- tetrahydrooctyldimethylchlorosilane (TFCS). The surfaces consisting of a nanofiber mesh demonstrated the highest static contact angle, when covered with TFCS monolayers. However, the surfaces consisting of nanorod arrays were found to be possessing the best dynamic hydrophobicity due to their continuous surface structure.

165 citations

Journal ArticleDOI
TL;DR: A novel strategy that employs oxygen-independent free radicals generated from a polymerization initiator for eradicating cancer cells by inducing apoptosis in hypoxic cancer cells is introduced.
Abstract: Anticancer modalities based on oxygen free radicals, including photodynamic therapy and radiotherapy, have emerged as promising treatments in the clinic. However, the hypoxic environment in tumor tissue prevents the formation of oxygen free radicals. Here we introduce a novel strategy that employs oxygen-independent free radicals generated from a polymerization initiator for eradicating cancer cells. The initiator is mixed with a phase-change material and loaded into the cavities of gold nanocages. Upon irradiation by a near-infrared laser, the phase-change material is melted due to the photothermal effect of gold nanocages, leading to the release and decomposition of the loaded initiator to generate free radicals. The free radicals produced in this way are highly effective in inducing apoptosis in hypoxic cancer cells.

163 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic study was conducted on small Pd nanocrystals (5-6 nm) to understand the effects of catalyst structure and electrolyte on the oxygen reduction reaction (ORR) and formic acid oxidation (FAO).
Abstract: A systematic study was conducted on small Pd nanocrystals (5–6 nm) to understand the effects of catalyst structure and electrolyte on the oxygen reduction reaction (ORR) and formic acid oxidation (FAO) The ORR activities of Pd catalysts strongly depended on their structure and the electrolyte used It was found that Pd cubes were 10 times more active than Pd octahedra for ORR in an aqueous HClO4 solution due to higher onset potential of OHad formation on the cubic surface In the case of a H2SO4 solution, the ORR activity of Pd cubes was 17 times higher than that of Pd octahedra due to the stronger adsorption of (bi)sulfate on the surface of octahedral nanocrystals in addition to OHad In alkaline solutions, however, no structure dependence was observed for ORR due to the outer-sphere electron-transfer mechanism in the potential region for Pd oxide formation For FAO, no advantage was observed on shape-controlled Pd nanocrystals in comparison to conventional Pd catalysts The FAO current densities, both

163 citations

Journal ArticleDOI
TL;DR: It is demonstrated that kinetic parameters, including rate constant and activation energy, can be derived from spectroscopic measurements and then used to calculate the initial reduction rate and further have this parameter quantitatively correlated with the twin structure of a seed and nanocrystal.
Abstract: Kinetic control is a powerful means for maneuvering the twin structure and shape of metal nanocrystals and thus optimizing their performance in a variety of applications. However, there is only a vague understanding of the explicit roles played by reaction kinetics due to the lack of quantitative information about the kinetic parameters. With Pd as an example, here we demonstrate that kinetic parameters, including rate constant and activation energy, can be derived from spectroscopic measurements and then used to calculate the initial reduction rate and further have this parameter quantitatively correlated with the twin structure of a seed and nanocrystal. On a quantitative basis, we were able to determine the ranges of initial reduction rates required for the formation of nanocrystals with a specific twin structure, including single-crystal, multiply twinned, and stacking fault-lined. This work represents a major step forward toward the deterministic syntheses of colloidal noble-metal nanocrystals with s...

163 citations

Journal ArticleDOI
01 Aug 1995-Langmuir
TL;DR: In this article, self-assembled monolayers (SAMs) of alkylsiloxanes were patterned by microcontact printing (μCP) on a number of substrates: N/Al 2 O 2, Si/SiO 2, TiN/TiO 2, glasses, indium tin oxide (ITO), and plasma modified polyimide.
Abstract: Self-assembled monolayers (SAMs) of alkylsiloxanes were patterned by microcontact printing (μCP) on a number of substrates : N/Al 2 O 2 , Si/SiO 2 , TiN/TiO 2 , glasses, indium tin oxide (ITO), and plasma-modified polyimide. The patterned SAMs on these surfaces define and direct the selective chemical vapor deposition (CVD) of copper using (hexafluoroacetylacetonato)(vinyltrimethylsilane)copper(I) (Cu I (hfac)(vtms)) as the source gas. This paper presents several examples of microstructures of copper fabricated by selective, SAM-directed CVD, including fabrication of thin-film interconnects (with feature sizes of 0.5-100 μm), and selective filling of trenches and vias (models of microstructures having high aspect ratios) with feature sizes below 1 μm.

162 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations