scispace - formally typeset
Search or ask a question
Author

Younan Xia

Bio: Younan Xia is an academic researcher from The Wallace H. Coulter Department of Biomedical Engineering. The author has contributed to research in topics: Nanocages & Nanowire. The author has an hindex of 216, co-authored 943 publications receiving 175757 citations. Previous affiliations of Younan Xia include Washington University in St. Louis & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors synthesized Pt-Ni octahedral nanocrystals with Ni(OH)2 naturally formed on their surfaces as a promising catalyst for the hydrogen evolution reaction (HER) in an alkaline solution.
Abstract: We have synthesized Pt–Ni octahedral nanocrystals with Ni(OH)2 naturally formed on their surfaces as a promising catalyst for the hydrogen evolution reaction (HER) in an alkaline solution. For Pt–Ni octahedra of 9 nm in size, they exhibited specific and mass HER activities 15 times and 4.6 times greater than those of a commercial Pt/C catalyst in 0.1 M KOH solution.

95 citations

Journal ArticleDOI
TL;DR: PAM of cytochromes in cytoplasm is expected to be a high-throughput, label-free technique for studying live cell functions, which cannot be accomplished by conventional histology.
Abstract: Photoacoustic microscopy (PAM) has achieved submicron lateral resolution in showing subcellular structures; however, relatively few endogenous subcellular contrasts have so far been imaged. Given that the hemeprotein, mostly cytochromes in general cells, is optically absorbing around the Soret peak (∼420 nm), we implemented label-free PAM of cytochromes in cytoplasm for the first time. By measuring the photoacoustic spectra of the oxidized and reduced states of fibroblast lysate and fitting the difference spectrum with three types of cytochromes, we found that the three cytochromes account for more than half the optical absorption in the cell lysate at 420 nm wavelength. Fixed fibroblasts on slides were imaged by PAM at 422 and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard staining histology. PAM was also applied to label-free histology of mouse ear sections by showing cytoplasms and nuclei of various cells. PAM of cytochromes in cytoplasm is expected to be a high-throughput, label-free technique for studying live cell functions, which cannot be accomplished by conventional histology.

95 citations

Journal ArticleDOI
TL;DR: This research highlights the need to understand more fully the role of x-ray diffraction in the determination of viscosity and its role in earthquake-triggered landsliding.
Abstract: [*] Dr. J. Zeng, Prof. X. Wang, Prof. J. Hou, Prof. S. Zhang, J. Huang, C. Liu, C. H. Wu, Y. Lin Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei, Anhui 230026 (P. R. China) E-mail: jzeng@mail.ustc.edu.cn; xpwang@ustc.edu.cn; jghou@ustc.edu.cn Prof. Y. Xia, Dr. J. Zeng Department of Biomedical Engineering Washington University St. Louis, MO 63130 (USA)

95 citations

Journal ArticleDOI
TL;DR: A synthesis of Au wavy nanowires in an aqueous solution in the presence of cetyltrimethylammonium bromide (CTAB) automatically separated from the solution and floated at the air/water interface, a growth mechanism potentially extendable to many other systems involving small surfactant molecules.
Abstract: We describe a synthesis of Au wavy nanowires in an aqueous solution in the presence of cetyltrimethylammonium bromide (CTAB). The resultant Au nanowires automatically separated from the solution and floated at the air/water interface. We investigated the formation mechanism by characterizing the samples obtained at different stages of the synthesis. Both particle attachment and cold welding were found to be involved in the formation of such nanowires. Based on X-ray photoelectron spectroscopy and thermogravimetric analysis, the CTAB molecules adsorbed on the surface of a Au nanostructure went through a change in structure from a bilayer to a monolayer, converting the Au surface from hydrophilic to hydrophobic. As a result, the Au wavy nanowires were driven to the air/water interface during the synthesis. This growth mechanism is potentially extendable to many other systems involving small surfactant molecules.

94 citations

Journal ArticleDOI
TL;DR: In this article, the authors use Ru as an example to evaluate recent progress in the synthesis of metal nanocrystals featuring different crystal phases and well-controlled shapes, and highlight the major factors that affect the packing of Ru atoms and, thus, the crystal phase, followed by an examination of the thermal stability of Ru nanoparticles in terms of both crystal phase and shape.
Abstract: Metal nanocrystals with controlled shapes or surface structures have received increasing attention, owing to their desirable properties for applications ranging from catalysis to photonics, energy and biomedicine. Most studies, however, have been limited to nanocrystals with the same crystal phase as the bulk material. Engineering the phase of metal nanocrystals while simultaneously attaining shape-controlled synthesis has recently emerged as a new frontier of research. Here, we use Ru as an example to evaluate recent progress in the synthesis of metal nanocrystals featuring different crystal phases and well-controlled shapes. We first discuss synthetic strategies for controlling the crystal phase and shape of Ru nanocrystals, with a focus on new mechanistic insights. We then highlight the major factors that affect the packing of Ru atoms and, thus, the crystal phase, followed by an examination of the thermal stability of Ru nanocrystals in terms of both crystal phase and shape. Next, we showcase the successful implementation of these Ru nanocrystals in various catalytic applications. Finally, we end with a discussion of the challenges and opportunities in the field, including leveraging the lessons learned from Ru to engineer the crystal phase and surface structure of other metals. Engineering the phase of metal nanocrystals while simultaneously achieving shape-controlled synthesis can enable new and desirable properties. This Review highlights the synthetic strategies for generating Ru nanocrystals with different crystal phases and surface structures, and outlines their implementation in catalytic applications.

94 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations