scispace - formally typeset
Search or ask a question
Author

Young-Chull Ahn

Bio: Young-Chull Ahn is an academic researcher from Pusan National University. The author has contributed to research in topics: Electrospinning & Air conditioning. The author has an hindex of 10, co-authored 44 publications receiving 1243 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, various physical treatment techniques based on two-step method, including stirrer, ultrasonic bath and ultrasonic disruptor, were systematically tested to verify their versatility for preparing stable nanofluids.

414 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal conductivity enhancement of water-based MWCNT nanofluid is increased up to 11.3% at a volume fraction of 0.01.

389 citations

Journal ArticleDOI
TL;DR: In this paper, optimized conditions to produce nanofibers using Nylon 6 are investigated and the nylon 6 nanofilters with diameters ranging from several microns down to 100nm or less are designed and evaluated.

305 citations

Journal ArticleDOI
TL;DR: In this paper, the surface morphology and pore formation of e-spun fiber have been studied by many variables that are involved in different polymer concentrations and solvent mixing ratios, such as relative humidity and solvent evaporation.
Abstract: Electrospinning method uses electrical force to produce a polymer nanofiber from a polymer solution. The surface morphology and the pore formation of e-spun fiber have been studied by many variables that are involved in different polymer concentrations and solvent mixing ratios. Another major factor affecting fiber morphology and size distribution is the relative humidity. The interaction between the relative humidity and the solvent evaporation affects the distribution of electric charge on the surface of the e-spun fiber. The higher the electric density, the thinner the fiber that can be produced in low humidity conditions. The relative humidity and solvent evaporation can create pores on the fiber surface. The pores can be formed under the condition of 30% relative humidity using 100% of THF solvent. The boundary of the pores has expanded and becomes formless due to the agglomeration of each pore, which can decrease the evaporating capacity.

54 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study was conducted to investigate the chronological performance variation such as pressure drop across a heat exchanger and cooling capacity due to the air-side particulate fouling of fin-and-tube heat exchangers for air conditioner evaporators used.
Abstract: An experimental study was conducted to investigate the chronological performance variation such as pressure drop across a heat exchanger and cooling capacity due to the air-side particulate fouling of fin-and-tube heat exchangers for air conditioner evaporators used. Thirty samples of air conditioners used in the field such as inns, restaurants, and offices are collected in chronological order of use. This study was intended to provide factual long-term fouling data under actual operating conditions. It was found that the important parameters to influence the fouling of heat exchangers are the concentration and size of indoor pollutants, the filter efficiency, the hydrophilicity of fin surfaces, fin spacing, and the structure of fins. The pressure drop of heat exchangers increases from year to year due to the deposition of indoor pollutants larger than 1 Μm in size and increases up to 44% in the samples used for 7 years. Also, the air-side particulate fouling degrades the cooling capacity by 10-15% in the samples used for 7 years.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review presents an overview of the electrospinning technique with its promising advantages and potential applications, and focuses on varied applications of electrospun fibers in different fields.

3,932 citations

Journal ArticleDOI
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

3,833 citations

Journal ArticleDOI
TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.

1,988 citations

Journal ArticleDOI
TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Abstract: Nanofluids are potential heat transfer fluids with enhanced thermophysical properties and heat transfer performance can be applied in many devices for better performances (i.e. energy, heat transfer and other performances). In this paper, a comprehensive literature on the applications and challenges of nanofluids have been compiled and reviewed. Latest up to date literatures on the applications and challenges in terms of PhD and Master thesis, journal articles, conference proceedings, reports and web materials have been reviewed and reported. Recent researches have indicated that substitution of conventional coolants by nanofluids appears promising. Specific application of nanofluids in engine cooling, solar water heating, cooling of electronics, cooling of transformer oil, improving diesel generator efficiency, cooling of heat exchanging devices, improving heat transfer efficiency of chillers, domestic refrigerator-freezers, cooling in machining, in nuclear reactor and defense and space have been reviewed and presented. Authors also critically analyzed some of the applications and identified research gaps for further research. Moreover, challenges and future directions of applications of nanofluids have been reviewed and presented in this paper. Based on results available in the literatures, it has been found nanofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids. This can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids. Because of its superior thermal performances, latest up to date literatures on this property have been summarized and presented in this paper as well. However, few barriers and challenges that have been identified in this review must be addressed carefully before it can be fully implemented in the industrial applications.

1,558 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an exhaustive review of the literature in this area and suggest a direction for future developments, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.
Abstract: Suspended nanoparticles in conventional fluids, called nanofluids, have been the subject of intensive study worldwide since pioneering researchers recently discovered the anomalous thermal behavior of these fluids. The enhanced thermal conductivity of these fluids with small-particle concentration was surprising and could not be explained by existing theories. Micrometer-sized particle-fluid suspensions exhibit no such dramatic enhancement. This difference has led to studies of other modes of heat transfer and efforts to develop a comprehensive theory. This article presents an exhaustive review of these studies and suggests a direction for future developments. The review and suggestions could be useful because the literature in this area is spread over a wide range of disciplines, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.

1,069 citations