scispace - formally typeset
Search or ask a question
Author

Young I. Cho

Bio: Young I. Cho is an academic researcher from Drexel University. The author has contributed to research in topics: Fouling & Blood viscosity. The author has an hindex of 42, co-authored 266 publications receiving 12349 citations. Previous affiliations of Young I. Cho include California Institute of Technology & Thomas Jefferson University Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: The in vivo measurement of pressure drop and flow during the cardiac cycle in the femoral artery of a dog, and the computer simulation of the experiment based on the use of the measured flow, vessel dimensions and blood viscosity are described.

7 citations

Patent
17 Oct 1996
TL;DR: In this paper, a method for minimizing localized corrosion of fluid containers that occurs as a consequence of most non-chemical procedures for removing scale deposits is described, which is desirably performed by an induction coil (20) wrapped around a fluid container such as a pipe encrusted with scale through which hard water is flowing.
Abstract: A method for minimizing localized corrosion of fluid containers that occurs as a consequence of most non-chemical procedures for removing scale deposits is described. It counteracts the unavoidable side-effect of the lowering of the local pH in the vicinity of the bubbles of CO2 that are generated during an electromagnetically-induced controlled precipitation procedure (17). The method is a simple and facile procedure for curbing the localized corrosion occurring as a result of most nonchemical procedures for removing scales. The method is desirably performed by an induction coil (20) wrapped around a fluid container such as a pipe encrusted with scale through which hard water is flowing (18). A pulsing electrical current (22A) is successively applied, a transitory induced electric current is generated in the solution, and scale encrusted on the fluid container dissolves in the solution. When the pulsing is stopped, the induced electric current in the solution ceases and so the scale stops dissolving, allowing a protective layer of scale to form over potential points of corrosion. Optionally permanent magnets may be used in the process, alone or with an induction coil.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of physical water treatment (PWT) on fouling mitigation in a simulated cooling tower operating at high cycles of concentration, where hard water was produced by evaporating pure water in a circulating open cooling tower, where dissolved calcium carbonate ions became concentrated with time.
Abstract: The purpose of the present study is to investigate the effect of a physical water treatment (PWT) technology on fouling mitigation in a simulated cooling tower operating at high cycles of concentration. Hard water was produced by evaporating pure water in a circulating open cooling tower, where dissolved calcium carbonate ions became concentrated with time. Heat transfer tests were conducted in a rectangular channel by varying the cycle of concentration (COC) from 5 to 10, and fouling resistances were measured over 270 hrs for each case with and without the PWT treatment. Another test was conducted with no blowdown case with and without the PWT treatment. The fouling resistance at 5 cycles with the PWT treatment was about 70% less than that in the case without the PWT treatment at the end of 270-hr tests. Even at 10 cycles, the PWT treatment reduced the fouling resistance by 60% from the value for the no treatment case. Thus, one can conclude that the PWT technology can help circulating cooling-tower wate...

7 citations

Journal ArticleDOI
TL;DR: In this article, the influence of solvent chemistry on steady shear viscosity and first normal stress difference for aqueous polyacrylamide solutions (Separan AP-273) was investigated in the Weissenberg rheogoniometer and capillary tube viscometer.
Abstract: The influence of solvent chemistry on steady shear viscosity and first normal stress difference for aqueous polyacrylamide solutions (Separan AP-273) was investigated in the Weissenberg rheogoniometer and capillary tube viscometer. It was found that these rheological properties are particularly sensitive to the chemistry of the solvent. For example, the zero shear rate viscosity of a 1000 wppm Separan solution with distilled water as the solvent was greater than that with Chicago tap water as the solvent by a factor of 25, while the first normal force difference varied by a factor of two. The addition of an acid or a base to the Chicago tap water-Separan solution also influenced the zero shear rate viscosity and first normal force difference. It was found that there is an optimum pH of approximately 10 which yields a maximum value of the zero shear rate viscosity for the Separan-tap water solution. Limited data on the influence of solvent chemistry were obtained for 5000 wppm aqueous solutions of...

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed

5,329 citations

Journal ArticleDOI
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

4,634 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...

3,730 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the effective thermal conductivity of mixtures of Al 2O3 and CuO, dispersed in water, vacuum pump, engine oil, and ethylene glycol.
Abstract: Effective thermal conductivity of mixtures of e uids and nanometer-size particles is measured by a steady-state parallel-plate method. The tested e uids contain two types of nanoparticles, Al 2O3 and CuO, dispersed in water, vacuum pump e uid, engine oil, and ethylene glycol. Experimental results show that the thermal conductivities of nanoparticle ‐e uid mixtures are higher than those of the base e uids. Using theoretical models of effective thermal conductivity of a mixture, we have demonstrated that the predicted thermal conductivities of nanoparticle ‐e uid mixtures are much lower than our measured data, indicating the dee ciency in the existing models when used for nanoparticle ‐e uid mixtures. Possible mechanisms contributing to enhancement of the thermal conductivity of the mixtures are discussed. A more comprehensive theory is needed to fully explain the behavior of nanoparticle ‐e uid mixtures. Nomenclature cp = specie c heat k = thermal conductivity L = thickness Pe = Peclet number P q = input power to heater 1 r = radius of particle S = cross-sectional area T = temperature U = velocity of particles relative to that of base e uids ® = ratio of thermal conductivity of particle to that of base liquid ¯ = .® i 1/=.® i 2/ ° = shear rate of e ow Ω = density A = volume fraction of particles in e uids Subscripts

2,156 citations

Journal ArticleDOI
TL;DR: In this article, the status of worldwide research in the thermal conductivity of carbon nanotubes and their polymer nanocomposites is reviewed, as well as the relationship between thermal conductivities and the micro- and nano-structure of the composites.

2,102 citations