scispace - formally typeset
Search or ask a question
Author

Young Jae Song

Bio: Young Jae Song is an academic researcher from Sungkyunkwan University. The author has contributed to research in topics: Graphene & Scanning tunneling microscope. The author has an hindex of 25, co-authored 103 publications receiving 2915 citations. Previous affiliations of Young Jae Song include University of Maryland, College Park & National Institute of Standards and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an electron impact trans-cis conformational change of the isolated azobenzene molecules is explained by an electron-impact transcis conformation change of both isomers.
Abstract: We propose to utilize azobenzene as a nanomolecular switch which can be triggered by transmitting electrons above threshold biases. The effect is explained by an electron impact trans-cis conformational change of the isolated azobenzene molecules. The molecular electronic states of both isomers have been measured with spatially resolved scanning tunneling microscopy or spectroscopy, leading to suggested transition pathways of the electron-induced isomerization.

366 citations

Journal ArticleDOI
TL;DR: This work demonstrates a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values and a ternary inverter as a multi-valued logic application.
Abstract: Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.

302 citations

Journal ArticleDOI
TL;DR: This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BNFilm, and suggests a new promising template for graphene device fabrication.
Abstract: Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication.

253 citations

Journal ArticleDOI
09 Sep 2010-Nature
TL;DR: High-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field is used to study the top layer of multilayer epitaxial graphene, finding states with Landau level filling factors of 7/2, 9/2 and 11/2 suggestive of new many-body states in graphene.
Abstract: The unique electronic structure of graphene, a material made of carbon sheets just one atom thick, makes it of interest both to materials scientists looking for possible technological applications and to the study of fundamental aspects of physics. Young Jae Song et al. have studied one aspect of graphene's uniqueness — the fourfold energy degeneracy that means that a single Landau level (a peak in the density of states produced by a magnetic field) consists of four separate quantum states. Using a high-resolution scanning tunnelling microscope that operates at a record low temperature of down to 10 millikelvin, they perform tunnelling spectroscopy measurements on epitaxial graphene. They obtain spectral fingerprints of the Landau levels, showing in fine detail how they evolve with magnetic fields and how they split (at high fields) into the four separate quantum states. The authors observe states with fractional Landau level filling factors of 7/2, 9/2 and 11/2, which are suggestive of new many-body states in graphene. In graphene, two particular sets of electrons exist that have a fourfold energy degeneracy. To study the corresponding four quantum states comprising a Landau level, these authors perform measurements on epitaxial graphene at 10 millikelvin. They take spectral 'fingerprints' of the Landau levels, showing in detail how they evolve with magnetic field and how they split into the four separate quantum states. They also observe states with Landau level filling factors of 7/2, 9/2 and 11/2. Electrons in a single sheet of graphene behave quite differently from those in traditional two-dimensional electron systems. Like massless relativistic particles, they have linear dispersion and chiral eigenstates. Furthermore, two sets of electrons centred at different points in reciprocal space (‘valleys’) have this dispersion, giving rise to valley degeneracy. The symmetry between valleys, together with spin symmetry, leads to a fourfold quartet degeneracy of the Landau levels, observed as peaks in the density of states produced by an applied magnetic field. Recent electron transport measurements have observed the lifting of the fourfold degeneracy in very large applied magnetic fields, separating the quartet into integer1,2,3,4 and, more recently, fractional5,6 levels. The exact nature of the broken-symmetry states that form within the Landau levels and lift these degeneracies is unclear at present and is a topic of intense theoretical debate7,8,9,10,11. Here we study the detailed features of the four quantum states that make up a degenerate graphene Landau level. We use high-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field to study the top layer of multilayer epitaxial graphene. When the Fermi level lies inside the fourfold Landau manifold, significant electron correlation effects result in an enhanced valley splitting for even filling factors, and an enhanced electron spin splitting for odd filling factors. Most unexpectedly, we observe states with Landau level filling factors of 7/2, 9/2 and 11/2, suggestive of new many-body states in graphene.

200 citations

Journal ArticleDOI
TL;DR: A high-performance ReS2 -based thin-film transistor and photodetector with high on/off-current ratio, high mobility, and fast temporal response through O2 plasma treatment is reported.
Abstract: A high-performance ReS2 -based thin-film transistor and photodetector with high on/off-current ratio (10(4) ), high mobility (7.6 cm(2) V(-1) s(-1) ), high photoresponsivity (2.5 × 10(7) A W(-1) ), and fast temporal response (rising and decaying time of 670 ms and 5.6 s, respectively) through O2 plasma treatment is reported.

198 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Two-dimensional heterostructures with extended range of functionalities yields a range of possible applications, and spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system.
Abstract: BACKGROUND Materials by design is an appealing idea that is very hard to realize in practice. Combining the best of different ingredients in one ultimate material is a task for which we currently have no general solution. However, we do have some successful examples to draw upon: Composite materials and III-V heterostructures have revolutionized many aspects of our lives. Still, we need a general strategy to solve the problem of mixing and matching crystals with different properties, creating combinations with predetermined attributes and functionalities. ADVANCES Two-dimensional (2D) materials offer a platform that allows creation of heterostructures with a variety of properties. One-atom-thick crystals now comprise a large family of these materials, collectively covering a very broad range of properties. The first material to be included was graphene, a zero-overlap semimetal. The family of 2D crystals has grown to includes metals (e.g., NbSe 2 ), semiconductors (e.g., MoS 2 ), and insulators [e.g., hexagonal boron nitride (hBN)]. Many of these materials are stable at ambient conditions, and we have come up with strategies for handling those that are not. Surprisingly, the properties of such 2D materials are often very different from those of their 3D counterparts. Furthermore, even the study of familiar phenomena (like superconductivity or ferromagnetism) in the 2D case, where there is no long-range order, raises many thought-provoking questions. A plethora of opportunities appear when we start to combine several 2D crystals in one vertical stack. Held together by van der Waals forces (the same forces that hold layered materials together), such heterostructures allow a far greater number of combinations than any traditional growth method. As the family of 2D crystals is expanding day by day, so too is the complexity of the heterostructures that could be created with atomic precision. When stacking different crystals together, the synergetic effects become very important. In the first-order approximation, charge redistribution might occur between the neighboring (and even more distant) crystals in the stack. Neighboring crystals can also induce structural changes in each other. Furthermore, such changes can be controlled by adjusting the relative orientation between the individual elements. Such heterostructures have already led to the observation of numerous exciting physical phenomena. Thus, spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system. The possibility of positioning crystals in very close (but controlled) proximity to one another allows for the study of tunneling and drag effects. The use of semiconducting monolayers leads to the creation of optically active heterostructures. The extended range of functionalities of such heterostructures yields a range of possible applications. Now the highest-mobility graphene transistors are achieved by encapsulating graphene with hBN. Photovoltaic and light-emitting devices have been demonstrated by combining optically active semiconducting layers and graphene as transparent electrodes. OUTLOOK Currently, most 2D heterostructures are composed by direct stacking of individual monolayer flakes of different materials. Although this method allows ultimate flexibility, it is slow and cumbersome. Thus, techniques involving transfer of large-area crystals grown by chemical vapor deposition (CVD), direct growth of heterostructures by CVD or physical epitaxy, or one-step growth in solution are being developed. Currently, we are at the same level as we were with graphene 10 years ago: plenty of interesting science and unclear prospects for mass production. Given the fast progress of graphene technology over the past few years, we can expect similar advances in the production of the heterostructures, making the science and applications more achievable.

4,851 citations

01 Jun 2005

3,154 citations