scispace - formally typeset
Search or ask a question
Author

Young-Jun Yu

Bio: Young-Jun Yu is an academic researcher from Chungnam National University. The author has contributed to research in topics: Graphene & Quantum dot. The author has an hindex of 25, co-authored 95 publications receiving 6688 citations. Previous affiliations of Young-Jun Yu include Columbia University & LG Display.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a variation of the work function for single and bilayer graphene devices measured by scanning Kelvin probe microscopy (SKPM) is reported, by using the electric field effect, which can be adjusted as the gate voltage tunes the Fermi level across the charge neutrality point.
Abstract: We report variation of the work function for single and bilayer graphene devices measured by scanning Kelvin probe microscopy (SKPM). By use of the electric field effect, the work function of graphene can be adjusted as the gate voltage tunes the Fermi level across the charge neutrality point. Upon biasing the device, the surface potential map obtained by SKPM provides a reliable way to measure the contact resistance of individual electrodes contacting graphene.

1,205 citations

Journal ArticleDOI
TL;DR: Variation of the work function for single and bilayer graphene devices measured by scanning Kelvin probe microscopy (SKPM) is reported, by use of the electric field effect.
Abstract: We report variation of the work function for single and bi-layer graphene devices measured by scanning Kelvin probe microscopy (SKPM). Using the electric field effect, the work function of graphene can be adjusted as the gate voltage tunes the Fermi level across the charge neutrality point. Upon biasing the device, the surface potential map obtained by SKPM provides a reliable way to measure the contact resistance of individual electrodes contacting graphene.

1,130 citations

Journal ArticleDOI
14 Aug 2013-ACS Nano
TL;DR: This work demonstrates field-effect transistors with MoS2 channels, hBN dielectric, and graphene gate electrodes, and takes advantage of the mechanical strength and flexibility of these materials to create flexible and transparent FETs that show unchanged performance up to 1.5% strain.
Abstract: Atomically thin forms of layered materials, such as conducting graphene, insulating hexagonal boron nitride (hBN), and semiconducting molybdenum disulfide (MoS2), have generated great interests recently due to the possibility of combining diverse atomic layers by mechanical “stacking” to create novel materials and devices. In this work, we demonstrate field-effect transistors (FETs) with MoS2 channels, hBN dielectric, and graphene gate electrodes. These devices show field-effect mobilities of up to 45 cm2/Vs and operating gate voltage below 10 V, with greatly reduced hysteresis. Taking advantage of the mechanical strength and flexibility of these materials, we demonstrate integration onto a polymer substrate to create flexible and transparent FETs that show unchanged performance up to 1.5% strain. These heterostructure devices consisting of ultrathin two-dimensional (2D) materials open up a new route toward high-performance flexible and transparent electronics.

1,004 citations

Journal ArticleDOI
TL;DR: It is proposed that oxygen molecular anions are stabilized by water solvation and electrostatic binding to the silicon dioxide surface and become stronger and more irreversible in the presence of moisture and over long periods of time.
Abstract: Using micro-Raman spectroscopy and scanning tunneling microscopy, we study the relationship between structural distortion and electrical hole doping of graphene on a silicon dioxide substrate. The observed upshift of the Raman G band represents charge doping and not compressive strain. Two independent factors control the doping: (1) the degree of graphene coupling to the substrate and (2) exposure to oxygen and moisture. Thermal annealing induces a pronounced structural distortion due to close coupling to SiO2 and activates the ability of diatomic oxygen to accept charge from graphene. Gas flow experiments show that dry oxygen reversibly dopes graphene; doping becomes stronger and more irreversible in the presence of moisture and over long periods of time. We propose that oxygen molecular anions are stabilized by water solvation and electrostatic binding to the silicon dioxide surface.

745 citations

Journal ArticleDOI
TL;DR: These non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials show high mobility, high on/off current ratio, large memory window and stable retention, providing a promising route towards flexible and transparent memory devices utilizing atomically thin two- dimensional materials.
Abstract: Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexagonal boron nitride was used as a tunnel barrier. In these ultrathin heterostructured memory devices, the atomically thin molybdenum disulphide or graphene-trapping layer stores charge tunnelled through hexagonal boron nitride, serving as a floating gate to control the charge transport in the graphene or molybdenum disulphide channel. By varying the thicknesses of two-dimensional materials and modifying the stacking order, the hysteresis and conductance polarity of the field-effect transistor can be controlled. These devices show high mobility, high on/off current ratio, large memory window and stable retention, providing a promising route towards flexible and transparent memory devices utilizing atomically thin two-dimensional materials.

648 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations

Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Two-dimensional heterostructures with extended range of functionalities yields a range of possible applications, and spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system.
Abstract: BACKGROUND Materials by design is an appealing idea that is very hard to realize in practice. Combining the best of different ingredients in one ultimate material is a task for which we currently have no general solution. However, we do have some successful examples to draw upon: Composite materials and III-V heterostructures have revolutionized many aspects of our lives. Still, we need a general strategy to solve the problem of mixing and matching crystals with different properties, creating combinations with predetermined attributes and functionalities. ADVANCES Two-dimensional (2D) materials offer a platform that allows creation of heterostructures with a variety of properties. One-atom-thick crystals now comprise a large family of these materials, collectively covering a very broad range of properties. The first material to be included was graphene, a zero-overlap semimetal. The family of 2D crystals has grown to includes metals (e.g., NbSe 2 ), semiconductors (e.g., MoS 2 ), and insulators [e.g., hexagonal boron nitride (hBN)]. Many of these materials are stable at ambient conditions, and we have come up with strategies for handling those that are not. Surprisingly, the properties of such 2D materials are often very different from those of their 3D counterparts. Furthermore, even the study of familiar phenomena (like superconductivity or ferromagnetism) in the 2D case, where there is no long-range order, raises many thought-provoking questions. A plethora of opportunities appear when we start to combine several 2D crystals in one vertical stack. Held together by van der Waals forces (the same forces that hold layered materials together), such heterostructures allow a far greater number of combinations than any traditional growth method. As the family of 2D crystals is expanding day by day, so too is the complexity of the heterostructures that could be created with atomic precision. When stacking different crystals together, the synergetic effects become very important. In the first-order approximation, charge redistribution might occur between the neighboring (and even more distant) crystals in the stack. Neighboring crystals can also induce structural changes in each other. Furthermore, such changes can be controlled by adjusting the relative orientation between the individual elements. Such heterostructures have already led to the observation of numerous exciting physical phenomena. Thus, spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system. The possibility of positioning crystals in very close (but controlled) proximity to one another allows for the study of tunneling and drag effects. The use of semiconducting monolayers leads to the creation of optically active heterostructures. The extended range of functionalities of such heterostructures yields a range of possible applications. Now the highest-mobility graphene transistors are achieved by encapsulating graphene with hBN. Photovoltaic and light-emitting devices have been demonstrated by combining optically active semiconducting layers and graphene as transparent electrodes. OUTLOOK Currently, most 2D heterostructures are composed by direct stacking of individual monolayer flakes of different materials. Although this method allows ultimate flexibility, it is slow and cumbersome. Thus, techniques involving transfer of large-area crystals grown by chemical vapor deposition (CVD), direct growth of heterostructures by CVD or physical epitaxy, or one-step growth in solution are being developed. Currently, we are at the same level as we were with graphene 10 years ago: plenty of interesting science and unclear prospects for mass production. Given the fast progress of graphene technology over the past few years, we can expect similar advances in the production of the heterostructures, making the science and applications more achievable.

4,851 citations

Journal ArticleDOI

3,711 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations