scispace - formally typeset
Search or ask a question
Author

Young-Woo Heo

Other affiliations: Oak Ridge National Laboratory
Bio: Young-Woo Heo is an academic researcher from University of Florida. The author has contributed to research in topics: Thin film & Nanorod. The author has an hindex of 44, co-authored 117 publications receiving 9259 citations. Previous affiliations of Young-Woo Heo include Oak Ridge National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent progress in doping control, materials processing methods such as dry etching and Ohmic and Schottky contact formation, new understanding of the role of hydrogen and finally the prospects for control of ferromagnetism in transition-metal doped ZnO.

1,625 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent results in developing improved fabrication processes for ZnO devices with the possible application to UV light emitters, spin functional devices, gas sensors, transparent electronics, and surface acoustic wave devices is given.
Abstract: A review is given of recent results in developing improved fabrication processes for ZnO devices with the possible application to UV light emitters, spin functional devices, gas sensors, transparent electronics, and surface acoustic wave devices. There is also interest in integrating ZnO with other wide band-gap semiconductors, such as the AlInGaN system. In this article, we summarize recent progress in controlling n- and p-type doping, materials processing methods, such as ion implantation for doping or isolation, Ohmic and Schottky contact formation, plasma etching, the role of hydrogen in the background n-type conductivity of many ZnO films, and finally, the recent achievement of room-temperature ferromagnetism in transition-metal (Mn or Co)-doped ZnO. This may lead to another class of spintronic devices, in which the spin of the carriers is exploited rather than the charge as in more conventional structures.

656 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent progress in doping control, materials processing methods such as dry etching and ohmic and Schottky contact formation, new understanding of the role of hydrogen and finally the prospects for control of ferromagnetism in transition metal-doped ZnO.

570 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed review of fabrication methods for obtaining device functionality from single ZnO nanorods is presented, where a key aspect is the use of sonication to facilitate transfer of the nanorod from the initial substrate on which they are grown to another substrate for device fabrication.
Abstract: The large surface area of ZnO nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for micro-lasers or memory arrays. In addition, they might be doped with transition metal (TM) ions to make spin-polarized light sources. To date, most of the work on ZnO nanostructures has focused on the synthesis methods and there have been only a few reports of the electrical characteristics. We review fabrication methods for obtaining device functionality from single ZnO nanorods. A key aspect is the use of sonication to facilitate transfer of the nanorods from the initial substrate on which they are grown to another substrate for device fabrication. Examples of devices fabricated using this method are briefly described, including metal-oxide semiconductor field effect depletion-mode transistors with good saturation behavior, a threshold voltage of ∼−3 V and a maximum transconductance of order 0.3 mS/mm and Pt Schottky diodes with excellent ideality factors of 1.1 at 25 °C and very low (1.5 × 10 −10 A, equivalent to 2.35 A cm −2 , at −10 V) reverse currents. The photoresponse showed only a minor component with long decay times (tens of seconds) thought to originate from surface states. These results show the ability to manipulate the electron transport in nanoscale ZnO devices.

562 citations

Journal ArticleDOI
TL;DR: A review of recent results in developing improved control of growth, doping, and fabrication processes for ZnO devices with possible applications to ultraviolet (UV) light emitters, spin functional devices, gas sensors, transparent electronics, and surface acoustic wave devices is given in this article.

558 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations

Journal ArticleDOI
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

2,440 citations

Journal ArticleDOI
TL;DR: A review of surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface sciences studies with the broader field of materials science of tin oxide as discussed by the authors.

2,232 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a new technique to fabricate p-type ZnO reproducibly, and showed high-quality undoped films with electron mobility exceeding that in the bulk.
Abstract: Since the successful demonstration of a blue light-emitting diode (LED)1, potential materials for making short-wavelength LEDs and diode lasers have been attracting increasing interest as the demands for display, illumination and information storage grow2,3,4. Zinc oxide has substantial advantages including large exciton binding energy, as demonstrated by efficient excitonic lasing on optical excitation5,6. Several groups have postulated the use of p-type ZnO doped with nitrogen, arsenic or phosphorus7,8,9,10, and even p–n junctions11,12,13. However, the choice of dopant and growth technique remains controversial and the reliability of p-type ZnO is still under debate14. If ZnO is ever to produce long-lasting and robust devices, the quality of epitaxial layers has to be improved as has been the protocol in other compound semiconductors15. Here we report high-quality undoped films with electron mobility exceeding that in the bulk. We have used a new technique to fabricate p-type ZnO reproducibly. Violet electroluminescence from homostructural p–i–n junctions is demonstrated at room-temperature.

1,964 citations