scispace - formally typeset
Search or ask a question
Author

Youngdo Won

Bio: Youngdo Won is an academic researcher from Hanyang University. The author has contributed to research in topics: Atomic layer deposition & Thin film. The author has an hindex of 8, co-authored 19 publications receiving 6675 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the CHARMM program as it exists today is provided with an emphasis on developments since the publication of the original CHARMM article in 1983.
Abstract: CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecu- lar simulation program. It has been developed over the last three decades with a primary focus on molecules of bio- logical interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estima- tors, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numer- ous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.

7,035 citations

Journal ArticleDOI
TL;DR: In this paper, a remote plasma atomic layer deposition (RPALD) method has been applied to grow a hafnium oxide thin film on the Si substrate, which was monitored by in situ XPS and the as-deposited structure and chemical bonding were examined by TEM and XPS.
Abstract: A remote plasma atomic layer deposition (RPALD) method has been applied to grow a hafnium oxide thin film on the Si substrate. The deposition process was monitored by in situ XPS and the as-deposited structure and chemical bonding were examined by TEM and XPS. The in situ XPS measurement showed the presence of a hafnium silicate phase at the initial stage of the RPALD process up to the 20th cycle and indicated that no hafnium silicide was formed. The initial hafnium silicate was amorphous and grew to a thickness of approximately 2nm. Based on these results and model reactions for silicate formation, we proposed an initial growth mechanism that includes adatom migration at nascent step edges. Density functional theory calculations on model compounds indicate that the hafnium silicate is thermodynamically favored over the hafnium silicide by as much as 250kJ∕mol.

33 citations

Journal ArticleDOI
Youngdo Won1
TL;DR: In this paper, a series of perturbations generated free energies of hydration indexed by the two Lennard-Jones parameters, e and Rmin, and interpolated the experimental free energies for each ion using the hydration shell model in combination with an empirical scaling parameter.
Abstract: Presented are parameters for mono-, di-, and trivalent cations compatible with the CHARMM additive force field and the TIP3P water model. Thermodynamic perturbation molecular dynamics simulations were performed for the cations located at the center of a TIP3P water sphere under a solvent boundary potential. A series of perturbations generated free energies of hydration indexed by the two Lennard-Jones parameters, e and Rmin. Interpolating the experimental free energies of hydration showed that multiple combinations of e and Rmin values reproduced the free energies of hydration for each ion. To overcome this nonunique parameter problem, the hydration shell model in combination with an empirical scaling parameter was applied to assign values for each ion. Rmin values were then identified via interpolation of the calculated free energies of hydration. The presented parameters are anticipated to be of utility for simulations of ions, including ions complexed to proteins.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new SwissADME web tool is presented that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar are presented.
Abstract: To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.

6,135 citations

Journal ArticleDOI
TL;DR: A range of new simulation algorithms and features developed during the past 4 years are presented, leading up to the GROMACS 4.5 software package, which provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations.
Abstract: Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. Availability: GROMACS is an open source and free software available from http://www.gromacs.org. Contact: erik.lindahl@scilifelab.se Supplementary information:Supplementary data are available at Bioinformatics online.

6,029 citations

Journal ArticleDOI
TL;DR: An extension of the CHARMM force field to drug‐like molecules is presented, making it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility ofCHARMM force fields to medicinally relevant systems.
Abstract: The widely used CHARMM additive all-atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug-like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug-like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3-phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform "all-CHARMM" simulations on drug-target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems.

4,553 citations

Journal ArticleDOI
TL;DR: PTRAJ and its successor CPPTRAJ are described, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions and the data therein derived.
Abstract: We describe PTRAJ and its successor CPPTRAJ, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions (i.e., coordinate trajectories) and the data therein derived. Common tools include the ability to manipulate the data to convert among trajectory formats, process groups of trajectories generated with ensemble methods (e.g., replica exchange molecular dynamics), image with periodic boundary conditions, create average structures, strip subsets of the system, and perform calculations such as RMS fitting, measuring distances, B-factors, radii of gyration, radial distribution functions, and time correlations, among other actions and analyses. Both the PTRAJ and CPPTRAJ programs and source code are freely available under the GNU General Public License version 3 and are currently distributed within the AmberTools 12 suite of support programs that make up part of the Amber package of computer programs (see http://ambe...

4,382 citations

Journal ArticleDOI
TL;DR: The presented lipid FF is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains and is anticipated to be of utility for simulations of pure lipid systems as well as heterogeneous systems including membrane proteins.
Abstract: A significant modification to the additive all-atom CHARMM lipid force field (FF) is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains. Motivated by the current CHARMM lipid FF (C27 and C27r) systematically yielding values of the surface area per lipid that are smaller than experimental estimates and gel-like structures of bilayers well above the gel transition temperature, selected torsional, Lennard-Jones and partial atomic charge parameters were modified by targeting both quantum mechanical (QM) and experimental data. QM calculations ranging from high-level ab initio calculations on small molecules to semiempirical QM studies on a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer in combination with experimental thermodynamic data were used as target data for parameter optimization. These changes were tested with simulations of pure bilayers at high hydration of the following six lipids: ...

3,489 citations