scispace - formally typeset
Search or ask a question
Author

Younggoo Kwon

Bio: Younggoo Kwon is an academic researcher from Sejong University. The author has contributed to research in topics: Throughput & Local area network. The author has an hindex of 11, co-authored 19 publications receiving 985 citations. Previous affiliations of Younggoo Kwon include University of Florida & Samsung Electro-Mechanics.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the exponential distribution is a good approximation model for the MAC layer service time for the queueing analysis, and the presented queueing models can accurately match the simulation data obtained from ns-2 when the arrival process at MAC layer is Poissonian.
Abstract: Summary IEEE 802.11 MAC protocol is the de facto standard for wireless local area networks (LANs), and has also been implemented in many network simulation packages for wireless multi-hop ad hoc networks. However, it is well known that, as the number of active stations increases, the performance of IEEE 802.11 MAC in terms of delay and throughput degrades dramatically, especially when each station’s load approaches its saturation state. To explore the inherent problems in this protocol, it is important to characterize the probability distribution of the packet service time at the MAC layer. In this paper, by modeling the exponential backoff process as a Markov chain, we can use the signal transfer function of the generalized state transition diagram to derive an approximate probability distribution of the MAC layer service time. We then present the discrete probability distribution for MAC layer packet service time, which is shown to accurately match the simulation data from network simulations. Based on the probability model for the MAC layer service time, we can analyze a few performance metrics of the wireless LAN and give better explanation to the performance degradation in delay and throughput at various traffic loads. Furthermore, we demonstrate that the exponential distribution is a good approximation model for the MAC layer service time for the queueing analysis, and the presented queueing models can accurately match the simulation data obtained from ns-2 when the arrival process at MAC layer is Poissonian. Copyright # 2004 John Wiley & Sons, Ltd.

343 citations

Proceedings ArticleDOI
30 Mar 2003
TL;DR: The extensive simulation studies show that the FCR algorithm could significantly improve the performance of the IEEE 802.11 MAC protocol if the efficient collision resolution algorithm is used and that the fairly scheduled FCR (FS-FCR) algorithm could simultaneously achieve high throughput performance and a high degree of fairness.
Abstract: Design of efficient medium access control (MAC) protocols with both high throughput performance and high-degree of fairness performance is a major focus in distributed contention-based MAC protocol research. In this paper, we propose a novel and efficient contention-based MAC protocol for wireless local area networks, namely, the fast collision resolution (FCR) algorithm. This algorithm is developed based on the following innovative ideas: to speed up the collision resolution, we actively redistribute the backoff timers for all active nodes; to reduce the average number of idle slots, we use smaller contention window sizes for nodes with successful packet transmissions and reduce the backoff timers exponentially fast when a fixed number of consecutive idle slots are detected. We show that the proposed FCR algorithm provides high throughput performance and low latency in wireless LANs. The extensive simulation studies show that the FCR algorithm could significantly improve the performance of the IEEE 802.11 MAC protocol if our efficient collision resolution algorithm is used and that the fairly scheduled FCR (FS-FCR) algorithm could simultaneously achieve high throughput performance and a high degree of fairness.

271 citations

Journal ArticleDOI
TL;DR: This paper proposes an efficient contention resolution algorithm for wireless local area networks, namely, the fast collision resolution (FCR) algorithm and incorporates the self-clocked fair queueing algorithm and a priority scheme into the FCR algorithm, and shows that RT-FCR can simultaneously achieve high throughput and good fairness performance for nonreal-time traffic while maintaining satisfactory QoS support for real- time traffic.
Abstract: Development of efficient medium access control (MAC) protocols providing both high throughput performance for data traffic and good quality of service (QoS) support for real-time traffic is the current major focus in distributed contention-based MAC protocol research. In this paper, we propose an efficient contention resolution algorithm for wireless local area networks, namely, the fast collision resolution (FCR) algorithm. The MAC protocol with this new algorithm attempts to provide significantly higher throughput performance for data services than the IEEE 802.11 MAC algorithm and more advanced dynamic tuning backoff (DTB) algorithm. We demonstrate that this algorithm indeed resolves collisions faster and reduces the idle slots more effectively. To provide good fairness performance and to support good QoS for real-time traffic, we incorporate the self-clocked fair queueing algorithm and a priority scheme into the FCR algorithm and come up with the real-time FCR (RT-FCR) algorithm, and show that RT-FCR can simultaneously achieve high throughput and good fairness performance for nonreal-time traffic while maintaining satisfactory QoS support for real-time traffic.

134 citations

Journal ArticleDOI
TL;DR: A rate-adaptive protocol with dynamic fragmentation is proposed to enhance the throughput based on fragment transmission bursts and channel information by using multiple thresholds for different data rates so more data can be transmitted at higher data rates when the channel is good.
Abstract: Many rate-adaptive MAC protocols have been proposed in the past for wireless local area networks (LANs) to enhance the throughput based on channel information. Most of these protocols are receiver based and employ the RTS/CTS collision avoidance handshake specified in the IEEE 802.11 standard. However, these protocols have not considered the possibility of bursty transmission of fragments in the corresponding rate adaptation schemes. In this article, a rate-adaptive protocol with dynamic fragmentation is proposed to enhance the throughput based on fragment transmission bursts and channel information. Instead of using one fragmentation threshold in the IEEE 802.11 standard, we propose to use multiple thresholds for different data rates so more data can be transmitted at higher data rates when the channel is good. In our proposed scheme, whenever the rate for the next transmission is chosen based on the channel information from the previous fragment transmission, a new fragment is then generated using the fragment threshold for the new rate. In this way, the channel condition can be more effectively used to squeeze more bits into the medium. We evaluate this scheme under a time-correlated fading channel model and show that the proposed scheme achieves much higher throughput than other rate-adaptive protocols.

58 citations

Proceedings ArticleDOI
16 May 2005
TL;DR: This paper proposes a novel anonymous and certificateless public-key infrastructure (AC-PKI) for ad hoc networks, and determines the optimal secret-sharing parameters to achieve the maximum security.
Abstract: This paper studies public-key management, a fundamental problem in providing security support for mobile ad hoc networks. The infrastructureless nature and network dynamics of ad hoc networks make the conventional certificate-based public-key solutions less suitable. To tackle this problem, we propose a novel anonymous and certificateless public-key infrastructure (AC-PKI) for ad hoc networks. AC-PKI enables public-key services with certificateless public keys and thus avoids the complicated certificate management inevitable in conventional certificate-based solutions. To satisfy the demand for private keys during network operation, we employ the secret-sharing technique to distribute a system master-key among a preselected set of nodes, called D-PKG, which offer a collaborative private-key-generation service. In addition, we identify pinpoint attacks against D-PKG and propose anonymizing D-PKG as the countermeasure. Moreover, we determine the optimal secret-sharing parameters to achieve the maximum security.

57 citations


Cited by
More filters
Journal ArticleDOI
01 May 2013
TL;DR: In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs, and the main FANET design challenges are introduced.
Abstract: One of the most important design problems for multi-UAV (Unmanned Air Vehicle) systems is the communication which is crucial for cooperation and collaboration between the UAVs. If all UAVs are directly connected to an infrastructure, such as a ground base or a satellite, the communication between UAVs can be realized through the in-frastructure. However, this infrastructure based communication architecture restricts the capabilities of the multi-UAV systems. Ad-hoc networking between UAVs can solve the problems arising from a fully infrastructure based UAV networks. In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs. The differences between FANETs, MANETs (Mobile Ad-hoc Networks) and VANETs (Vehicle Ad-Hoc Networks) are clarified first, and then the main FANET design challenges are introduced. Along with the existing FANET protocols, open research issues are also discussed.

1,072 citations

Proceedings ArticleDOI
22 Aug 2005
TL;DR: The objective is to define an access method optimized for throughput and fairness, able to dynamically adapt to physical channel conditions, to operate near optimum for a wide range of error rates, and to provide equal time shares when hosts use different bit rates.
Abstract: We consider wireless LANs such as IEEE 802.11 operating in the unlicensed radio spectrum. While their nominal bit rates have increased considerably, the MAC layer remains practically unchanged despite much research effort spent on improving its performance. We observe that most proposals for tuning the access method focus on a single aspect and disregard others. Our objective is to define an access method optimized for throughput and fairness, able to dynamically adapt to physical channel conditions, to operate near optimum for a wide range of error rates, and to provide equal time shares when hosts use different bit rates.We propose a novel access method derived from 802.11 DCF [2] (Distributed Coordination Function) in which all hosts use similar values of the contention window CW to benefit from good short-term access fairness. We call our method Idle Sense, because each host observes the mean number of idle slots between transmission attempts to dynamically control its contention window. Unlike other proposals, Idle Sense enables each host to estimate its frame error rate, which can be used for switching to the right bit rate. We present simulations showing how the method leads to high throughput, low collision overhead, and low delay. The method also features fast reactivity and time-fair channel allocation.

541 citations

Journal ArticleDOI
TL;DR: The simulation results show that by controlling the total traffic rate, the original 802.11 protocol can support strict QoS requirements, such as those required by voice over Internet protocol (VoIP) or streaming video, and at the same time achieve high channel utilization.
Abstract: This paper studies an important problem in the IEEE 802.11 distributed coordination function (DCF)-based wireless local area network (WLAN): how well can the network support quality of service (QoS). Specifically, this paper analyzes the network's performance in terms of maximum protocol capacity or throughput, delay, and packet loss rate. Although the performance of the 802.11 protocol, such as throughput or delay, has been extensively studied in the saturated case, it is demonstrated that maximum protocol capacity can only be achieved in the nonsaturated case and is almost independent of the number of active nodes. By analyzing packet delay, consisting of medium access control (MAC) service time and waiting time, accurate estimates were derived for delay and delay variation when the throughput increases from zero to the maximum value. Packet loss rate is also given for the nonsaturated case. Furthermore, it is shown that the channel busyness ratio provides precise and robust information about the current network status, which can be utilized to facilitate QoS provisioning. The authors have conducted a comprehensive simulation study to verify their analytical results and to tune the 802.11 to work at the optimal point with maximum throughput and low delay and packet loss rate. The simulation results show that by controlling the total traffic rate, the original 802.11 protocol can support strict QoS requirements, such as those required by voice over Internet protocol (VoIP) or streaming video, and at the same time achieve high channel utilization.

278 citations

Journal ArticleDOI
TL;DR: This paper proposes a new efficient collision resolution mechanism, called GDCF, based on the observation that 802.11 DCF decreases the contention window to the initial value after each success transmission, which essentially assumes that each successful transmission is an indication that the system is under low traffic loading.
Abstract: The medium-access control (MAC) protocol is one of the key components in wireless local area networks (WLANs). The main features of a MAC protocol are high throughput, good fairness, energy efficiency, and support priority guarantees, especially under distributed contention-based environment. Based on the current standardized IEEE 802.11 distributed coordination function (DCF) protocol, this paper proposes a new efficient collision resolution mechanism, called GDCF. Our main motivation is based on the observation that 802.11 DCF decreases the contention window to the initial value after each success transmission, which essentially assumes that each successful transmission is an indication that the system is under low traffic loading. GDCF takes a more conservative measure by halving the contention window size after c consecutive successful transmissions. This "gentle" decrease can reduce the collision probability, especially when the number of competing nodes is large. We compute the optimal value for c and the numerical results from both analysis and simulation demonstrate that GDCF significantly improve the performance of 802.11 DCF, including throughput, fairness, and energy efficiency. In addition, GDCF is flexible for supporting priority access by selecting different values of c for different traffic types and is very easy to implement it, as it does not requires any changes in control message structure and access procedures in DCF.

265 citations

Proceedings ArticleDOI
17 Nov 2009
TL;DR: A generalized analysis of the IEEE 802.15.4 medium access control (MAC) protocol in terms of reliability, delay and energy consumption gives more accurate results than existing methods in the literature and Monte Carlo simulations confirm that the proposed approximations offer a satisfactory accuracy.
Abstract: A generalized analysis of the IEEE 802.15.4 medium access control (MAC) protocol in terms of reliability, delay and energy consumption is presented. The IEEE 802.15.4 exponential backoff process is modeled through a Markov chain taking into account retry limits, acknowledgements, and unsaturated traffic. Simple and effective approximations of the reliability, delay and energy consumption under low traffic regime are proposed. It is demonstrated that the delay distribution of IEEE 802.15.4 depends mainly on MAC parameters and collision probability. In addition, the impact of MAC parameters on the performance metrics is analyzed. The analysis is more general and gives more accurate results than existing methods in the literature. Monte Carlo simulations confirm that the proposed approximations offer a satisfactory accuracy.

246 citations