scispace - formally typeset
Search or ask a question
Author

Yousra Alkabani

Bio: Yousra Alkabani is an academic researcher from George Washington University. The author has contributed to research in topics: Hardware Trojan & Trojan. The author has an hindex of 15, co-authored 58 publications receiving 1193 citations. Previous affiliations of Yousra Alkabani include American University in Cairo & Rice University.


Papers
More filters
Proceedings Article
06 Aug 2007
TL;DR: The first active hardware metering scheme that aims to protect integrated circuits (IC) intellectual property (IP) against piracy and runtime tampering is introduced and has a low-overhead in terms of power, delay, and area, while it is extremely resilient against the considered attacks.
Abstract: We introduce the first active hardware metering scheme that aims to protect integrated circuits (IC) intellectual property (IP) against piracy and runtime tampering. The novel metering method simultaneously employs inherent unclonable variability in modern manufacturing technology, and functionality preserving alternations of the structural IC specifications. Active metering works by enabling the designers to lock each IC and to remotely disable it. The objectives are realized by adding new states and transitions to the original finite state machine (FSM) to create boosted finite state machines(BFSM) of the pertinent design. A unique and unpredictable ID generated by an IC is utilized to place an BFSM into the power-up state upon activation. The designer, knowing the transition table, is the only one who can generate input sequences required to bring the BFSM into the functional initial (reset) state. To facilitate remote disabling of ICs, black hole states are integrated within the BFSM. We introduce nine types of potential attacks against the proposed active metering method. We further describe a number of countermeasures that must be taken to preserve the security of active metering against the potential attacks. The implementation details of the method with the objectives of being low-overhead, unclonable, obfuscated, stable, while having a diverse set of keys is presented. The active metering method was implemented, synthesized and mapped on the standard benchmark circuits. Experimental evaluations illustrate that the method has a low-overhead in terms of power, delay, and area, while it is extremely resilient against the considered attacks.

354 citations

Proceedings ArticleDOI
05 Nov 2007
TL;DR: In this article, the authors proposed a remote activation scheme that aims to protect integrated circuits (IC) intellectual property (IP) against piracy by replication of a few states of the finite state machine and adding control to the state transitions.
Abstract: We introduce a remote activation scheme that aims to protect integrated circuits (IC) intellectual property (IP) against piracy. Remote activation enables designers to lock each working IC and to then remotely enable it. The new method exploits inherent unclonable variability in modern manufacturing for unique identification (ID) and integrated the IDs into the circuit functionality. The objectives are realized by replication of a few states of the finite state machine (FSM) and adding control to the state transitions. On each chip, the added control signals are a function of the unique IDs and are thus unclonable. On standard benchmark circuits, the experimental results show that the novel activation method is stable, unclonable, attack-resilient, while having a low overhead and a unique key for each IC.

194 citations

Proceedings ArticleDOI
02 Nov 2009
TL;DR: A new Trojan detection method based on nonintrusive external IC quiescent current measurements based on a new metric called consistency is introduced, and a robust estimation method that estimates the gate properties while simultaneously detecting the Trojans is presented.
Abstract: A Trojan attack maliciously modifies, alters, or embeds unplanned components inside the exploited chips. Given the original chip specifications, and process and simulation models, the goal of Trojan detection is to identify the malicious components. This paper introduces a new Trojan detection method based on nonintrusive external IC quiescent current measurements. We define a new metric called consistency. Based on the consistency metric and properties of the objective function, we present a robust estimation method that estimates the gate properties while simultaneously detecting the Trojans. Experimental evaluations on standard benchmark designs show the validity of the metric, and demonstrate the effectiveness of the new Trojan detection.

102 citations

Book ChapterDOI
15 Oct 2008
TL;DR: A methodology for unique identification of integrated circuits (ICs) that addresses untrusted fabrication and other security problems, and introduces a number of novel security and authentication protocols, such as hardware metering, challenge-based authentication and prevention of software piracy.
Abstract: We have developed a methodology for unique identification of integrated circuits (ICs) that addresses untrusted fabrication and other security problems. The new method leverages nondestructive gate-level characterization of ICs post-manufacturing, revealing the hidden and unclonable uniqueness of each IC. The IC characterization uses the externally measured leakage currents for multiple input vectors. We have derived several optimization techniques for gate-level characterization. The probability of collision of IDs in presence of intra- and inter-chip correlations is computed. We also introduce a number of novel security and authentication protocols, such as hardware metering , challenge-based authentication and prevention of software piracy , that leverage the extraction of a unique ID for each IC. Experimental evaluations of the proposed approach on a large set of benchmark examples reveals its effectiveness even in presence of measurement errors.

95 citations

Proceedings ArticleDOI
08 Jun 2008
TL;DR: This work presents the first approach for post-silicon leakage power reduction through input vector control (IVC) that takes into account the impact of the manufacturing variability (MV), and addresses two major challenges.
Abstract: We present the first approach for post-silicon leakage power reduction through input vector control (IVC) that takes into account the impact of the manufacturing variability (MV). Because of the MV, the integrated circuits (ICs) implementing one design require different input vectors to achieve their lowest leakage states. We address two major challenges. The first is the extraction of the gate- level characteristics of an IC by measuring only the overall leakage power for different inputs. The second problem is the rapid generation of input vectors that result in a low leakage for a large number of unique ICs that implement a given design, but are different in the post-manufacturing phase. Experimental results on a large set of benchmark instances demonstrate the efficiency of the proposed methods. For example, the leakage power consumption could be reduced in average by more than 10.4%, when compared to the previously published IVC techniques that did not consider MV.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A classification of hardware Trojans and a survey of published techniques for Trojan detection are presented.
Abstract: Editor's note:Today's integrated circuits are vulnerable to hardware Trojans, which are malicious alterations to the circuit, either during design or fabrication. This article presents a classification of hardware Trojans and a survey of published techniques for Trojan detection.

1,227 citations

Proceedings ArticleDOI
10 Mar 2008
TL;DR: A novel comprehensive technique to end piracy of integrated circuits (EPIC), which requires that every chip be activated with an external key, which can only be generated by the holder of IP rights, and cannot be duplicated.
Abstract: As semiconductor manufacturing requires greater capital investments, the use of contract foundries has grown dramatically, increasing exposure to mask theft and unauthorized excess production. While only recently studied, IC piracy has now become a major challenge for the electronics and defense industries [6].We propose a novel comprehensive technique to end piracy of integrated circuits (EPIC). It requires that every chip be activated with an external key, which can only be generated by the holder of IP rights, and cannot be duplicated. EPIC is based on (i) automatically-generated chip IDs, (ii) a novel combinational locking algorithm, and (iii) innovative use of public-key cryptography. Our evaluation suggests that the overhead of EPIC on circuit delay and power is negligible, and the standard flows for verification and test do not require change. In fact, major required components have already been integrated into several chips in production. We also use formal methods to evaluate combinational locking and computational attacks. A comprehensive protocol analysis concludes that EPIC is surprisingly resistant to various piracy attempts.

639 citations

Journal ArticleDOI
15 Jul 2014
TL;DR: The threat of hardware Trojan attacks is analyzed; attack models, types, and scenarios are presented; different forms of protection approaches are discussed; and emerging attack modes, defenses, and future research pathways are described.
Abstract: Security of a computer system has been traditionally related to the security of the software or the information being processed. The underlying hardware used for information processing has been considered trusted. The emergence of hardware Trojan attacks violates this root of trust. These attacks, in the form of malicious modifications of electronic hardware at different stages of its life cycle, pose major security concerns in the electronics industry. An adversary can mount such an attack with an objective to cause operational failure or to leak secret information from inside a chip-e.g., the key in a cryptographic chip, during field operation. Global economic trend that encourages increased reliance on untrusted entities in the hardware design and fabrication process is rapidly enhancing the vulnerability to such attacks. In this paper, we analyze the threat of hardware Trojan attacks; present attack models, types, and scenarios; discuss different forms of protection approaches, both proactive and reactive; and describe emerging attack modes, defenses, and future research pathways.

588 citations

Journal ArticleDOI
18 Jul 2014
TL;DR: This paper systematizes the current knowledge in this emerging field, including a classification of threat models, state-of-the-art defenses, and evaluation metrics for important hardware-based attacks.
Abstract: The multinational, distributed, and multistep nature of integrated circuit (IC) production supply chain has introduced hardware-based vulnerabilities. Existing literature in hardware security assumes ad hoc threat models, defenses, and metrics for evaluation, making it difficult to analyze and compare alternate solutions. This paper systematizes the current knowledge in this emerging field, including a classification of threat models, state-of-the-art defenses, and evaluation metrics for important hardware-based attacks.

514 citations

Proceedings ArticleDOI
03 Jun 2012
TL;DR: This work demonstrates that an attacker can decipher the obfuscated nctlist, in a time linear to the number of keys, by sensitizing the key values to the output, and develops techniques to fix this vulnerability and make obfuscation truly exponential in thenumber of inserted keys.
Abstract: Due to globalization of Integrated Circuit (IC) design flow, rogue elements in the supply chain can pirate ICs, overbuild ICs, and insert hardware trojans. EPIC [1] obfuscates the design by randomly inserting additional gates; only a correct key makes the design to produce correct outputs. We demonstrate that an attacker can decipher the obfuscated nctlist, in a time linear to the number of keys, by sensitizing the key values to the output. We then develop techniques to fix this vulnerability and make obfuscation truly exponential in the number of inserted keys.

489 citations