scispace - formally typeset
Search or ask a question
Author

Yousuke Utsumi

Bio: Yousuke Utsumi is an academic researcher from SLAC National Accelerator Laboratory. The author has contributed to research in topics: Galaxy & Weak gravitational lensing. The author has an hindex of 31, co-authored 119 publications receiving 5151 citations. Previous affiliations of Yousuke Utsumi include Stanford University & Japan Society for the Promotion of Science.


Papers
More filters
Journal ArticleDOI
Hiroaki Aihara, Nobuo Arimoto, Robert Armstrong, Stephane Arnouts, Neta A. Bahcall, S. J. Bickerton, James Bosch, Kevin Bundy, Peter Capak, James H. H. Chan, Masashi Chiba, Jean Coupon, Eiichi Egami, Motohiro Enoki, F. Finet, Hiroki Fujimori, Seiji Fujimoto, Hisanori Furusawa, J. Furusawa, Tomotsugu Goto, Andy D. Goulding, Johnny P. Greco, Jenny E. Greene, James E. Gunn, Takashi Hamana, Yuichi Harikane, Yasuhiro Hashimoto, Takashi Hattori, Masao Hayashi, Yusuke Hayashi, Krzysztof G. Hełminiak, Ryo Higuchi, Chiaki Hikage, Paul T. P. Ho, Bau-Ching Hsieh, Kuiyun Huang, Song Huang, Hiroyuki Ikeda, Masatoshi Imanishi, Akio K. Inoue, K. Iwasawa, Ikuru Iwata, Anton T. Jaelani, Hung-Yu Jian, Y. Kamata, Hiroshi Karoji, Nobunari Kashikawa, N. Katayama, Satoshi Kawanomoto, Issha Kayo, Jun Koda, Michitaro Koike, Takashi Kojima, Yutaka Komiyama, Akira Konno, S. Koshida, Yusei Koyama, Haruka Kusakabe, A. Leauthaud, Chien-Hsiu Lee, Lihwai Lin, Yen-Ting Lin, Robert H. Lupton, Rachel Mandelbaum, Yoshiki Matsuoka, Elinor Medezinski, S. Mineo, Shoken M. Miyama, Hironao Miyatake, Satoshi Miyazaki, Rieko Momose, A. More, Surhud More, Y. Moritani, Takashi J. Moriya, Tomoki Morokuma, Shiro Mukae, Ryoma Murata, Hitoshi Murayama, Tohru Nagao, Fumiaki Nakata, Mana Niida, Hiroko Niikura, Atsushi J. Nishizawa, Yoshiyuki Obuchi, Masamune Oguri, Yukie Oishi, Nobuhiro Okabe, Yuki Okura, Yoshiaki Ono, Masato Onodera, M. Onoue, Ken Osato, Masami Ouchi, P. A. Price, Tae-Soo Pyo, M. Sako, Sakurako Okamoto, Marcin Sawicki, Takatoshi Shibuya, Kazuhiro Shimasaku, Atsushi Shimono, Masato Shirasaki, John D. Silverman, Melanie Simet, Joshua S. Speagle, David N. Spergel, Michael A. Strauss, Yuma Sugahara, Naoshi Sugiyama, Yasushi Suto, Sherry H. Suyu, Nao Suzuki, Philip J. Tait, Tadafumi Takata, Masahiro Takada, Naoyuki Tamura, Masayuki Tanaka, Masaomi Tanaka, Yoko Tanaka, T. Terai, Yuichi Terashima, Yoshiki Toba, Jun Toshikawa, Edwin L. Turner, Tomohisa Uchida, Hisakazu Uchiyama, Keiichi Umetsu, Fumihiro Uraguchi, Yuji Urata, Tomonori Usuda, Yousuke Utsumi, Shiang-Yu Wang, Wei-Hao Wang, Kenneth C. Wong, Kiyoto Yabe, Yoshihiko Yamada, Hitomi Yamanoi, Naoki Yasuda, Sherry Yeh, Atsunori Yonehara, Suraphong Yuma 
TL;DR: Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii as mentioned in this paper.
Abstract: Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg$^2$ in five broad bands ($grizy$), with a $5\,\sigma$ point-source depth of $r \approx 26$. The Deep layer covers a total of 26~deg$^2$ in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg$^2$). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.

532 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137 degrees of the sky.
Abstract: We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137 deg^2 of the sky. Thanks to the high effective galaxy number density of ∼17 arcmin^−2, even after conservative cuts such as a magnitude cut of i < 24.5 and photometric redshift cut of 0.3 ≤ z ≤ 1.5, we obtain a high-significance measurement of the cosmic shear power spectra in four tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range 300 ≤ l ≤ 1900. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat Λ cold dark matter model, we find |$S\,_{8}\equiv \sigma _8(\Omega _{\rm m}/0.3)^\alpha =0.800^{+0.029}_{-0.028}$| for α = 0.45 (⁠|$S\,_8=0.780^{+0.030}_{-0.033}$| for α = 0.5) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of S_8, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted for in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of S_8 by up to ∼0.6 σ in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.

510 citations

Proceedings ArticleDOI
TL;DR: Hyper Suprime-Cam (HSC) as mentioned in this paper is an 870 Mega pixel prime focus camera for the 8.2 m Subaru telescope that can produce a sharp image of 0.25 arc-sec FWHM in r-band over the entire 1.5 degree (in diameter) field of view.
Abstract: Hyper Suprime-Cam (HSC) is an 870 Mega pixel prime focus camera for the 8.2 m Subaru telescope. The wide field corrector delivers sharp image of 0.25 arc-sec FWHM in r-band over the entire 1.5 degree (in diameter) field of view. The collimation of the camera with respect to the optical axis of the primary mirror is realized by hexapod actuators whose mechanical accuracy is few microns. As a result, we expect to have seeing limited image most of the time. Expected median seeing is 0.67 arc-sec FWHM in i-band. The sensor is a p-ch fully depleted CCD of 200 micron thickness (2048 x 4096 15 μm square pixel) and we employ 116 of them to pave the 50 cm focal plane. Minimum interval between exposures is roughly 30 seconds including reading out arrays, transferring data to the control computer and saving them to the hard drive. HSC uniquely features the combination of large primary mirror, wide field of view, sharp image and high sensitivity especially in red. This enables accurate shape measurement of faint galaxies which is critical for planned weak lensing survey to probe the nature of dark energy. The system is being assembled now and will see the first light in August 2012.

399 citations

Journal ArticleDOI
Hiroaki Aihara1, Nobuo Arimoto2, Nobuo Arimoto3, Robert Armstrong4  +167 moreInstitutions (41)
TL;DR: Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea as mentioned in this paper.
Abstract: Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg$^2$ in five broad bands ($grizy$), with a $5\,\sigma$ point-source depth of $r \approx 26$. The Deep layer covers a total of 26~deg$^2$ in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg$^2$). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.

392 citations

Journal ArticleDOI
Hiroaki Aihara1, Robert Armstrong2, Steven J. Bickerton, James Bosch2, Jean Coupon3, Hisanori Furusawa4, Yusuke Hayashi4, Hiroyuki Ikeda4, Yukiko Kamata4, Hiroshi Karoji2, Hiroshi Karoji4, Satoshi Kawanomoto4, Michitaro Koike4, Yutaka Komiyama4, Yutaka Komiyama5, Dustin Lang6, Robert H. Lupton2, Sogo Mineo4, Hironao Miyatake7, Hironao Miyatake1, Satoshi Miyazaki5, Satoshi Miyazaki4, Tomoki Morokuma1, Yoshiyuki Obuchi4, Yukie Oishi4, Yuki Okura, Paul A. Price2, Tadafumi Takata4, Tadafumi Takata5, Manobu Tanaka, Masayuki Tanaka4, Yoko Tanaka4, Tomohisa Uchida, Fumihiro Uraguchi4, Yousuke Utsumi8, Shiang-Yu Wang9, Yoshihiko Yamada4, Hitomi Yamanoi4, Naoki Yasuda1, Nobuo Arimoto4, Nobuo Arimoto5, Masashi Chiba10, François Finet4, Hiroki Fujimori, Seiji Fujimoto1, J. Furusawa4, Tomotsugu Goto11, Andy D. Goulding2, James E. Gunn2, Yuichi Harikane1, Takashi Hattori4, Masao Hayashi4, Krzysztof G. Hełminiak12, Ryo Higuchi1, Chiaki Hikage1, Paul T. P. Ho9, Bau-Ching Hsieh9, Kuiyun Huang13, Song Huang1, Song Huang14, Masatoshi Imanishi4, Masatoshi Imanishi5, Ikuru Iwata4, Ikuru Iwata5, Anton T. Jaelani10, Hung-Yu Jian9, Nobunari Kashikawa5, Nobunari Kashikawa4, Nobuhiko Katayama1, Takashi Kojima1, Akira Konno1, S. Koshida4, Haruka Kusakabe1, Alexie Leauthaud14, Chien-Hsiu Lee4, Lihwai Lin9, Yen-Ting Lin9, Rachel Mandelbaum15, Yoshiki Matsuoka4, Yoshiki Matsuoka16, Elinor Medezinski2, Shoken Miyama8, Shoken Miyama17, Rieko Momose11, Anupreeta More1, Surhud More1, Shiro Mukae1, Ryoma Murata1, Hitoshi Murayama1, Hitoshi Murayama18, Hitoshi Murayama19, Tohru Nagao16, Fumiaki Nakata4, Mana Niida16, Hiroko Niikura1, Atsushi J. Nishizawa20, Masamune Oguri1, Nobuhiro Okabe8, Yoshiaki Ono1, Masato Onodera4, M. Onoue4, M. Onoue5, Masami Ouchi1, Tae-Soo Pyo4, Takatoshi Shibuya1, Kazuhiro Shimasaku1, Melanie Simet21, Joshua S. Speagle1, Joshua S. Speagle22, David N. Spergel2, Michael A. Strauss2, Yuma Sugahara1, Naoshi Sugiyama1, Naoshi Sugiyama20, Yasushi Suto1, Nao Suzuki1, Philip J. Tait4, Masahiro Takada1, Tsuyoshi Terai4, Yoshiki Toba9, Edwin L. Turner1, Edwin L. Turner2, Hisakazu Uchiyama5, Keiichi Umetsu9, Yuji Urata23, Tomonori Usuda4, Tomonori Usuda5, Sherry Yeh4, Suraphong Yuma24 
TL;DR: This paper presents the second data release of the Hyper Suprime-Cam Subaru Strategic Program, a wide-field optical imaging survey on the 8.2 meter Subaru Telescope, including a major update to the processing pipeline, including improved sky subtraction, PSF modeling, object detection, and artifact rejection.
Abstract: This paper presents the second data release of the Hyper Suprime-Cam Subaru Strategic Program, a wide-field optical imaging survey using the 8.2 m Subaru Telescope. The release includes data from 174 nights of observation through 2018 January. The Wide layer data cover about 300 deg|$^2$| in all five broad-band filters (⁠|$grizy$|⁠) to the nominal survey exposure (10 min in |$gr$| and 20 min in |$izy$|⁠). Partially observed areas are also included in the release; about 1100 deg|$^2$| is observed in at least one filter and one exposure. The median seeing in the i-band is |${0_{.}^{\prime \prime }6}$|⁠, demonstrating the superb image quality of the survey. The Deep (26 deg|$^2$|⁠) and UltraDeep (4 deg|$^2$|⁠) data are jointly processed and the UltraDeep-COSMOS field reaches an unprecedented depth of |$i\sim 28$| at |$5 \, \sigma$| for point sources. In addition to the broad-band data, narrow-band data are also available in the Deep and UltraDeep fields. This release includes a major update to the processing pipeline, including improved sky subtraction, PSF modeling, object detection, and artifact rejection. The overall data quality has been improved, but this release is not without problems; there is a persistent deblender problem as well as new issues with masks around bright stars. The user is encouraged to review the issue list before utilizing the data for scientific explorations. All the image products as well as catalog products are available for download. The catalogs are also loaded into a database, which provides an easy interface for users to retrieve data for objects of interest. In addition to these main data products, detailed galaxy shape measurements withheld from Public Data Release 1 (PDR1) are now available to the community. The shape catalog is drawn from the S16A internal release, which has a larger area than PDR1 (160 deg|$^2$|⁠). All products are available at the data release site, https://hsc-release.mtk.nao.ac.jp/.

348 citations


Cited by
More filters
Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations

Journal ArticleDOI
TL;DR: The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way.
Abstract: (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg$^2$ field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5$\sigma$ point-source depth in a single visit in $r$ will be $\sim 24.5$ (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg$^2$ with $\delta<+34.5^\circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg$^2$ region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to $r\sim27.5$. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.

2,738 citations