scispace - formally typeset
Search or ask a question
Author

Yu Bai

Bio: Yu Bai is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Large Hadron Collider & Physics. The author has an hindex of 54, co-authored 226 publications receiving 8590 citations. Previous affiliations of Yu Bai include University of Science and Technology of China.


Papers
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2897 moreInstitutions (184)
TL;DR: In this article, the luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented, and a luminosity uncertainty of delta L/L = +/- 3.5 % is obtained.
Abstract: The luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at root s = 7 TeV. A luminosity uncertainty of delta L/L = +/- 3.5 % is obtained for the 47 pb(-1) of data delivered to ATLAS in 2010, and an uncertainty of delta L/L = +/- 1.8 % is obtained for the 5.5 fb(-1) delivered in 2011.

499 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2815 moreInstitutions (169)
TL;DR: In this article, a search for new phenomena in final states with an energetic jet and large missing transverse momentum was performed using 20.3 fb(-1) of root s = 8 TeV data collected in 2012.
Abstract: Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb(-1) of root s = 8 TeV data collected in 2012 ...

414 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2914 moreInstitutions (169)
TL;DR: In this article, the jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text]TeV corresponding to an integrated luminosity of [formula] see text][formula:see text].
Abstract: The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.

294 citations

Journal ArticleDOI
TL;DR: A detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII over the remaining lifetime of BEPCII operation is presented in this article.
Abstract: There has recently been a dramatic renewal of interest in the subjects of hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like $XYZ$ states at BESIII and $B$ factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related $X(1835)$ meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII over the remaining lifetime of BEPCII operation. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.

272 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2916 moreInstitutions (196)
TL;DR: In this paper, a measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.4 GeV.
Abstract: A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be mu = 1.17 +/- 0.27 at the value of the Higgs boson mass measured by ATLAS, m(H) = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m(H). They are found to be mu(ggF) = 1.32 +/- 0.38, mu(VBF) = 0.8 +/- 0.7, mu(WH) = 1.0 +/- 1.6, mu(ZH) = 0.1(-0.1)(+3.7), and mu t (t) over barH = 1.6(-1.8)(+2.7), for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

268 citations


Cited by
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Journal ArticleDOI
TL;DR: MadGraph5 aMC@NLO as discussed by the authors is a computer program capable of handling all these computations, including parton-level fixed order, shower-matched, merged, in a unified framework whose defining features are flexibility, high level of parallelisation and human intervention limited to input physics quantities.
Abstract: We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5 aMC@NLO, capable of handling all these computations — parton-level fixed order, shower-matched, merged — in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e + e − collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

6,509 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations