scispace - formally typeset
Search or ask a question
Author

Yu Chen

Bio: Yu Chen is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Receptor & Purinergic signalling. The author has an hindex of 16, co-authored 23 publications receiving 4364 citations. Previous affiliations of Yu Chen include Ludwig Maximilian University of Munich & University of California, San Diego.

Papers
More filters
Journal ArticleDOI
04 Mar 2010-Nature
TL;DR: It is shown that injury releases mitochondrial DAMPs into the circulation with functionally important immune consequences, including formyl peptides and mitochondrial DNA, which promote PMN Ca2+ flux and phosphorylation of mitogen-activated protein (MAP) kinases, thus leading to PMN migration and degranulation in vitro and in vivo.
Abstract: Injury causes a systemic inflammatory response syndrome (SIRS) that is clinically much like sepsis. Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through pattern recognition receptors. Similarly, cellular injury can release endogenous 'damage'-associated molecular patterns (DAMPs) that activate innate immunity. Mitochondria are evolutionary endosymbionts that were derived from bacteria and so might bear bacterial molecular motifs. Here we show that injury releases mitochondrial DAMPs (MTDs) into the circulation with functionally important immune consequences. MTDs include formyl peptides and mitochondrial DNA. These activate human polymorphonuclear neutrophils (PMNs) through formyl peptide receptor-1 and Toll-like receptor (TLR) 9, respectively. MTDs promote PMN Ca(2+) flux and phosphorylation of mitogen-activated protein (MAP) kinases, thus leading to PMN migration and degranulation in vitro and in vivo. Circulating MTDs can elicit neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These signal through innate immune pathways identical to those activated in sepsis to create a sepsis-like state. The release of such mitochondrial 'enemies within' by cellular injury is a key link between trauma, inflammation and SIRS.

2,932 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: Human neutrophils release adenosine triphosphate from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors, which provides signal amplification, controlling gradient sensing and migration of neutrophil.
Abstract: Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.

785 citations

Journal ArticleDOI
04 Nov 2010-Blood
TL;DR: It is concluded that pannexin-1 hemichannels and P2X1 and P 2X4 receptors facilitate ATP release and autocrine feedback mechanisms that control Ca(2+) entry and T-cell activation at the immune synapse.

279 citations

Journal ArticleDOI
TL;DR: It is found that neutrophils released cellular adenosine triphosphate (ATP) in response to exogenous stimuli such as formylated bacterial peptides and inflammatory mediators that activated Fcγ, interleukin-8, C5a complement, and leukotriene B4 receptors.
Abstract: Efficient activation of neutrophils is a key requirement for effective immune responses. We found that neutrophils released cellular adenosine triphosphate (ATP) in response to exogenous stimuli such as formylated bacterial peptides and inflammatory mediators that activated Fcgamma, interleukin-8, C5a complement, and leukotriene B(4) receptors. Stimulation of the formyl peptide receptor (FPR) led to ATP release through pannexin-1 (panx1) hemichannels, and FPRs colocalized with P2Y2 nucleotide receptors on the cell surface to form a purinergic signaling system that facilitated neutrophil activation. Disruption of this purinergic signaling system by inhibiting or silencing panx1 hemichannels or P2Y2 receptors blocked neutrophil activation and impaired innate host responses to bacterial infection. Thus, purinergic signaling is a fundamental mechanism required for neutrophil activation and immune defense.

178 citations

Book ChapterDOI
TL;DR: Different methods have been developed that are based on the assessment of oxidative burst by measuring intracellular ROS production or formation of ROS in the extracellular space, and these two are particularly widely used because of their convenience and accuracy.
Abstract: Polymorphonuclear neutrophils (PMNs) generate reactive oxygen species (ROS) during phagocytosis and in response to soluble agonists. This functional response, termed oxidative burst, contributes to host defense, but it can also result in collateral damage of host tissues. To study this important PMN response, different methods have been developed that are based on the assessment of oxidative burst by measuring intracellular ROS production or formation of ROS in the extracellular space. Among the different methods that were developed, the following two are particularly widely used because of their convenience and accuracy. The first method depends on the reduction of cytochrome c, which can be assessed by photometry, while the second method relies on changes in the fluorescence properties of dihydrorhodamine 123, which can be assessed by flow cytometry.

133 citations


Cited by
More filters
Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
04 Mar 2010-Nature
TL;DR: It is shown that injury releases mitochondrial DAMPs into the circulation with functionally important immune consequences, including formyl peptides and mitochondrial DNA, which promote PMN Ca2+ flux and phosphorylation of mitogen-activated protein (MAP) kinases, thus leading to PMN migration and degranulation in vitro and in vivo.
Abstract: Injury causes a systemic inflammatory response syndrome (SIRS) that is clinically much like sepsis. Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through pattern recognition receptors. Similarly, cellular injury can release endogenous 'damage'-associated molecular patterns (DAMPs) that activate innate immunity. Mitochondria are evolutionary endosymbionts that were derived from bacteria and so might bear bacterial molecular motifs. Here we show that injury releases mitochondrial DAMPs (MTDs) into the circulation with functionally important immune consequences. MTDs include formyl peptides and mitochondrial DNA. These activate human polymorphonuclear neutrophils (PMNs) through formyl peptide receptor-1 and Toll-like receptor (TLR) 9, respectively. MTDs promote PMN Ca(2+) flux and phosphorylation of mitogen-activated protein (MAP) kinases, thus leading to PMN migration and degranulation in vitro and in vivo. Circulating MTDs can elicit neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These signal through innate immune pathways identical to those activated in sepsis to create a sepsis-like state. The release of such mitochondrial 'enemies within' by cellular injury is a key link between trauma, inflammation and SIRS.

2,932 citations

Journal ArticleDOI
TL;DR: A review of the basis, diagnosis, and current treatment of Sepsis in patients with this disorder is examined.
Abstract: Morbidity and mortality from sepsis remains unacceptably high. Large variability in clinical practice, plus the increasing awareness that certain processes of care associated with improved critical...

2,927 citations

Journal ArticleDOI
TL;DR: Tissue decellularization with preservation of ECM integrity and bioactivity can be optimized by making educated decisions regarding the agents and techniques utilized during processing.

2,677 citations

Journal ArticleDOI
TL;DR: The mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.
Abstract: Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.

2,615 citations