scispace - formally typeset
Search or ask a question
Author

Yu-Chung Hsieh

Bio: Yu-Chung Hsieh is an academic researcher from Central Geological Survey, MOEA. The author has contributed to research in topics: Landslide & Geology. The author has an hindex of 7, co-authored 9 publications receiving 132 citations. Previous affiliations of Yu-Chung Hsieh include Chinese Ministry of Economic Affairs & National Taiwan University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that sediment delivery rate decreased each year and was affected by heavy rainfall during each period for the Meiyuan Shan landslide area, and multi-period aerial photogrammetry and ALS can be effectively applied after the landslide disaster for monitoring the terrain changes of the downstream river channel and their potential impacts.
Abstract: In this study, six different periods of digital terrain model (DTM) data obtained from various flight vehicles by using the techniques of aerial photogrammetry, airborne LiDAR (ALS), and unmanned aerial vehicles (UAV) were adopted to discuss the errors and applications of these techniques. Error estimation provides critical information for DTM data users. This study conducted error estimation from the perspective of general users for mountain/forest areas with poor traffic accessibility using limited information, including error reports obtained from the data generation process and comparison errors of terrain elevations. Our results suggested that the precision of the DTM data generated in this work using different aircrafts and generation techniques is suitable for landslide analysis. Especially in mountainous and densely vegetated areas, data generated by ALS can be used as a benchmark to solve the problem of insufficient control points. Based on DEM differencing of multiple periods, this study suggests that sediment delivery rate decreased each year and was affected by heavy rainfall during each period for the Meiyuan Shan landslide area. Multi-period aerial photogrammetry and ALS can be effectively applied after the landslide disaster for monitoring the terrain changes of the downstream river channel and their potential impacts.

71 citations

Journal ArticleDOI
TL;DR: In this article, a morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution, and two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images.
Abstract: . Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.

25 citations

Journal ArticleDOI
TL;DR: In this paper, a polygon auto-tracing method for generating dip-slope maps based on airborne Light Detection and Ranging (LiDAR) data and a customized spatial analysis toolset developed in Python is proposed.

16 citations

Journal ArticleDOI
TL;DR: A high-resolution 2-ky record of changes in sediment delivery to Dahu, a floodplain lake in northeastern Taiwan, that suggests changes in precipitation has been inferred from organic matter, pollen, and spores in a 12m sediment core and from the organic matter compositions of soil, catchment plants, and fluvial suspended sediment as discussed by the authors.

13 citations

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper used two types of 3D images which differ in imaging principles to further explore the finer details of sedimentary terrain, and proposed a geological mapping practice that improves efficiency and meets a high-precision mapping standard with up to 2 m resolution using airborne LiDAR data.
Abstract: Traditional geological mapping may be hindered by rough terrain and dense vegetation resulting in obscured geological details. The advent of airborne Light Detection and Ranging (LiDAR) provides a very precise three-dimensional (3D) digital terrain model (DTM). However, its full potential in complementing traditional geological mapping remains to be explored using 3D rendering techniques. This study uses two types of 3D images which differ in imaging principles to further explore the finer details of sedimentary terrain. Our purposes are to demonstrate detailed geological mapping with 3D rendering techniques, to generate LiDAR-derived 3D strata boundaries that are advantageous in generating 2D geological maps and cross sections, and to develop a new practice in deriving the strike and dip of bedding with LiDAR data using an example from the north bank of the Keelung River in northern Taiwan. We propose a geological mapping practice that improves efficiency and meets a high-precision mapping standard with up to 2 m resolution using airborne LiDAR data. Through field verification and assessment, LiDAR data manipulation with relevant 3D visualization is shown to be an effective approach in improving the details of existing geological maps, specifically in sedimentary terrain.

12 citations


Cited by
More filters
01 Jan 2016
TL;DR: The remote sensing and image interpretation is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading remote sensing and image interpretation. As you may know, people have look hundreds times for their favorite novels like this remote sensing and image interpretation, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some malicious virus inside their computer. remote sensing and image interpretation is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the remote sensing and image interpretation is universally compatible with any devices to read.

1,802 citations

Journal ArticleDOI
TL;DR: This research examines aspects such as UAV platforms, different sensors and their application fields, as well as reviewing the advances of scientific research in MA at the present time, to provide a technical reference and an assessment of applications in mining, reclamation and environment.
Abstract: With the emergence and development of unmanned aerial vehicles (UAVs), different sensors have become more miniaturized and intelligent. UAVs equipped with various sensors are now an important approach for acquiring spatial data. Many advantages, such as low cost, short revisiting cycle, flexibility and high precision, have made UAVs powerful tools in geological, agricultural, ecological and forestry growth monitoring, as well as evaluation. Now, UAVs are a hotspot in scientific research. Their application in mining areas (MA), although still in its infancy, is developing rapidly in terms of speed, scale and service scope. This research examines aspects such as UAV platforms, different sensors and their application fields, as well as reviewing the advances of scientific research in MA at the present time. By combining current research and the functions of multiple sensors, an application framework for UAV monitoring in MA is constructed. Finally, the challenge and prospects for the development of UAVs and sensors are also considered. This research hopes to provide a technical reference, expanding the knowledge and recognition of UAV monitoring in MA, as well as an assessment of applications in mining, reclamation and environment.

149 citations

Journal ArticleDOI
TL;DR: A review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards is presented in this paper, where the authors present a review of the literature used for this purpose.
Abstract: . The number of scientific studies that consider possible applications of remotely piloted aircraft systems (RPASs) for the management of natural hazards effects and the identification of occurred damages strongly increased in the last decade. Nowadays, in the scientific community, the use of these systems is not a novelty, but a deeper analysis of the literature shows a lack of codified complex methodologies that can be used not only for scientific experiments but also for normal codified emergency operations. RPASs can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes such as landslides or volcanic activities but can also define the effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards.

118 citations

03 Apr 2014
TL;DR: In this paper, the authors demonstrate how multi-temporal LiDAR and high-resolution aerial imagery can be used to determine processes and volumes of riverbank erosion at a catchment scale.
Abstract: Riverbank erosion is a major contributor to catchment sediment budgets. At large spatial scales data is often restricted to planform channel change, with little information on process distributions and their sediment contribution. This study demonstrates how multi-temporal LiDAR and high resolution aerial imagery can be used to determine processes and volumes of riverbank erosion at a catchment scale. Remotely sensed data captured before and after an extreme flood event, enabled a digital elevation model of difference (DoD) to be constructed for the channel and floodplain. This meant that: the spatial area that could be assessed was extensive; three-dimensional forms of bank failures could be mapped at a resolution that enabled process inference; and the volume and rates of different bank erosion processes over time could be assessed. A classification of riverbank mass failures, integrating form and process, identified a total of 437 mass failure polygons throughout the study area. These were interpreted as wet flow mass failures based on the presence of a well defined scarp wall and the absence of failed blocks on the failure floor. The failures appeared to be the result of: bank exfiltration, antecedent moisture conditions preceding the event, and the historic development of the channel. Using one-dimensional hydraulic modelling to delineate geomorphic features within the main boundary of the macrochannel, an estimated 1 466 322m2 of erosion was interpreted as fluvial entrainment, occurring across catchment areas from 30 to 1668 km2. Only 8% of the whole riverbank planform area was occupied by mass failures, whilst fluvial entrainment covered 33%. A third of the volume of material eroded came from mass failures, even though they occupied 19% of the eroded bank area. The availability of repeat LiDAR surveys, combined with high-resolution aerial photography, was very effective in erosion process determination and quantification at a large spatial scale

88 citations