scispace - formally typeset
Search or ask a question
Author

Yu-Feng Zang

Bio: Yu-Feng Zang is an academic researcher from Hangzhou Normal University. The author has contributed to research in topics: Resting state fMRI & Functional magnetic resonance imaging. The author has an hindex of 69, co-authored 222 publications receiving 25446 citations. Previous affiliations of Yu-Feng Zang include Capital Medical University & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: The 1000 Functional Connectomes Project (Fcon_1000) as discussed by the authors is a large-scale collection of functional connectome data from 1,414 volunteers collected independently at 35 international centers.
Abstract: Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.

2,787 citations

Journal ArticleDOI
TL;DR: The newly developed toolbox, DPABI, which was evolved from REST and DPARSF is introduced, designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies.
Abstract: Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

2,179 citations

Journal ArticleDOI
TL;DR: A new marker of functional magnetic resonance imaging, amplitude of low-frequency fluctuation (ALFF) fluctuation, is used to investigate the baseline brain function of children with attention deficit hyperactivity disorder and suggests that the changed spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology in children with ADHD.
Abstract: In children with attention deficit hyperactivity disorder (ADHD), functional neuroimaging studies have revealed abnormalities in various brain regions, including prefrontal-striatal circuit, cerebellum, and brainstem. In the current study, we used a new marker of functional magnetic resonance imaging (fMRI), amplitude of low-frequency (0.01–0.08 Hz) fluctuation (ALFF) to investigate the baseline brain function of this disorder. Thirteen boys with ADHD (13.0 ± 1.4 years) were examined by resting-state fMRI and compared with age-matched controls. As a result, we found that patients with ADHD had decreased ALFF in the right inferior frontal cortex, left sensorimotor cortex, and bilateral cerebellum and the vermis as well as increased ALFF in the right anterior cingulated cortex, left sensorimotor cortex, and bilateral brainstem. This resting-state fMRI study suggests that the changed spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology in children with ADHD.

1,990 citations

Journal ArticleDOI
Yu-Feng Zang1, Tianzi Jiang1, Yingli Lu1, Yong He1, Lixia Tian1 
TL;DR: ReHo can consider as a complementary method to model-driven method, and it could help reveal the complexity of the human brain function, in which KCC was used to measure the similarity of the time series of a given voxels to those of its nearest neighbors in a voxel-wise way.

1,916 citations

Journal ArticleDOI
20 Sep 2011-PLOS ONE
TL;DR: A toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST), which was developed in MATLAB with graphical user interface (GUI).
Abstract: Resting-state fMRI (RS-fMRI) has been drawing more and more attention in recent years. However, a publicly available, systematically integrated and easy-to-use tool for RS-fMRI data processing is still lacking. We developed a toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST). REST was developed in MATLAB with graphical user interface (GUI). After data preprocessing with SPM or AFNI, a few analytic methods can be performed in REST, including functional connectivity analysis based on linear correlation, regional homogeneity, amplitude of low frequency fluctuation (ALFF), and fractional ALFF. A few additional functions were implemented in REST, including a DICOM sorter, linear trend removal, bandpass filtering, time course extraction, regression of covariates, image calculator, statistical analysis, and slice viewer (for result visualization, multiple comparison correction, etc.). REST is an open-source package and is freely available at http://www.restfmri.net.

1,726 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations

Journal ArticleDOI
TL;DR: Construction of brain networks from connectivity data is discussed and the most commonly used network measures of structural and functional connectivity are described, which variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, and test resilience of networks to insult.

9,291 citations

Journal ArticleDOI
TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

6,284 citations