scispace - formally typeset
Search or ask a question
Author

Yu-Hsiu Chen

Bio: Yu-Hsiu Chen is an academic researcher from National Tsing Hua University. The author has contributed to research in topics: Resistive random-access memory & Non-volatile memory. The author has an hindex of 6, co-authored 6 publications receiving 1011 citations.

Papers
More filters
Proceedings ArticleDOI
01 Dec 2008
TL;DR: In this paper, a novel HfO2-based resistive memory with the TiN electrodes is proposed and fully integrated with 0.18 mum CMOS technology, which uses a thin Ti layer as the reactive buffer layer into the anodic side of capacitor-like memory cell, and excellent memory performances such as low operation current (down to 25 muA), high on/off resistance ratio (above 1,000), fast switching speed (5 ns), satisfactory switching endurance (>106 cycles) have been demonstrated in the memory device.
Abstract: A novel HfO2-based resistive memory with the TiN electrodes is proposed and fully integrated with 0.18 mum CMOS technology. By using a thin Ti layer as the reactive buffer layer into the anodic side of capacitor-like memory cell, excellent memory performances, such as low operation current (down to 25 muA), high on/off resistance ratio (above 1,000), fast switching speed (5 ns), satisfactory switching endurance (>106 cycles), and reliable data retention (10 years extrapolation at 200degC) have been demonstrated in our memory device. Moreover, the benefits of high yield, robust memory performance at high temperature (200degC), excellent scalability, and multi-level operation promise its application in the next generation nonvolatile memory.

634 citations

Proceedings ArticleDOI
01 Dec 2010
TL;DR: In this article, a modified bottom electrode is proposed for the memory device to maintain the memory window and to endure resistive switching up to 1010 cycles, and the performance of the HfO X-based bipolar resistive memory was improved.
Abstract: The memory performances of the HfO X based bipolar resistive memory, including switching speed and memory reliability, are greatly improved in this work. Record high switching speed down to 300 ps is achieved. The cycling test shed a clear light on the wearing behavior of resistance states, and the correlation between over-RESET phenomenon and the worn low resistance state in the devices is discussed. The modified bottom electrode is proposed for the memory device to maintain the memory window and to endure resistive switching up to 1010 cycles.

256 citations

Journal ArticleDOI
TL;DR: In this paper, the memory performance of hafnium oxide (HfOx)-based resistive memory containing a thin reactive Ti buffer layer can be greatly improved due to the excellent ability of Ti to absorb oxygen atoms from the HfOx film after post-metal annealing.
Abstract: The memory performance of hafnium oxide (HfOx)-based resistive memory containing a thin reactive Ti buffer layer can be greatly improved. Due to the excellent ability of Ti to absorb oxygen atoms from the HfOx film after post-metal annealing, a large amount of oxygen vacancies are left in the HfOx layer of the TiN/Ti/HfOx/TiN stacked layer. These oxygen vacancies are crucial to make a memory device with a stable bipolar resistive switching behavior. Aside from the benefits of low operation power and large on/off ratio (>100), this memory also exhibits reliable switching endurance (>106 cycles), robust resistance states (200°C), high device yield (~100%), and fast switching speed (<10 ns).

175 citations

Journal ArticleDOI
TL;DR: In this article, a tri-gate nanowire poly-Si FET with embedded source/drain (e-S/D) and back gate was demonstrated, and the highly crystallized channel was fabricated by green nanosecond laser crystallization, chemical mechanical polish, and postsurface modification processes.
Abstract: Three-dimensional sequentially stackable high- $k$ /metal-gate-stacked tri-gate nanowire poly-Si FETs with embedded source/drain (e-S/D) and back gate were demonstrated. The highly crystallized channel, fabricated by green nanosecond laser crystallization, chemical mechanical polish, and postsurface modification processes, enhances the electrical property of the tri-gate nanowire FET. The e-S/D structure reduces the contact and series resistances caused by the nanowire structure. Thus, the fabricated n/p-type tri-gate nanowire poly-Si FETs exhibit steep subthreshold swings (96/125 mV/decade), high ON-currents (232/110 $\mu \text{A}/\mu \text{m}$ ), and $I_{{\mathrm{\scriptscriptstyle {on}}}}/I_{\mathrm{\scriptscriptstyle {OFF}}}$ ratio ( $> 10^{5})$ . Furthermore, the independent back gate with thin back gate oxide can easily adjust the threshold voltage of the tri-gate nanowire transistor and results in high gamma value (>0.05) FET realizing sequentially stacked and low $V_{\mathrm {dd}}$ (0.6 V) operable inverter.

16 citations

Proceedings ArticleDOI
14 Jun 2016
TL;DR: In this paper, a monolithic 3D image sensor is demonstrated by sequentially fabricating large-area (>2cm×2cm) monolayer (20A/W) TMD phototransistor array on logic/memory hybrid 3D+IC.
Abstract: A monolithic 3D image sensor is demonstrated by sequentially fabricating large-area (>2cm×2cm) monolayer ( 20A/W). The bottom 3D stackable poly-Si nanowire FET, fabricated by low thermal budget process (T sub 200uA/um). The low driving voltage 6T SRAM shows a static noise margin (SNM) of 150 mV at V DD =0.5V. Such integration of large-area monolayer TMD phototransistor array on logic/memory hybrid 3D+IC enables the low power and low cost monolithic 3D image sensor.

10 citations


Cited by
More filters
Journal ArticleDOI
02 May 2012
TL;DR: The physical mechanism, material properties, and electrical characteristics of a variety of binary metal-oxide resistive switching random access memory (RRAM) are discussed, with a focus on the use of RRAM for nonvolatile memory application.
Abstract: In this paper, recent progress of binary metal-oxide resistive switching random access memory (RRAM) is reviewed. The physical mechanism, material properties, and electrical characteristics of a variety of binary metal-oxide RRAM are discussed, with a focus on the use of RRAM for nonvolatile memory application. A review of recent development of large-scale RRAM arrays is given. Issues such as uniformity, endurance, retention, multibit operation, and scaling trends are discussed.

2,295 citations

Journal ArticleDOI
TL;DR: NVSim is developed, a circuit-level model for NVM performance, energy, and area estimation, which supports various NVM technologies, including STT-RAM, PCRAM, ReRAM, and legacy NAND Flash and is expected to help boost architecture-level NVM-related studies.
Abstract: Various new nonvolatile memory (NVM) technologies have emerged recently. Among all the investigated new NVM candidate technologies, spin-torque-transfer memory (STT-RAM, or MRAM), phase-change random-access memory (PCRAM), and resistive random-access memory (ReRAM) are regarded as the most promising candidates. As the ultimate goal of this NVM research is to deploy them into multiple levels in the memory hierarchy, it is necessary to explore the wide NVM design space and find the proper implementation at different memory hierarchy levels from highly latency-optimized caches to highly density- optimized secondary storage. While abundant tools are available as SRAM/DRAM design assistants, similar tools for NVM designs are currently missing. Thus, in this paper, we develop NVSim, a circuit-level model for NVM performance, energy, and area estimation, which supports various NVM technologies, including STT-RAM, PCRAM, ReRAM, and legacy NAND Flash. NVSim is successfully validated against industrial NVM prototypes, and it is expected to help boost architecture-level NVM-related studies.

1,100 citations

Journal ArticleDOI
21 Oct 2010
TL;DR: In this paper, the authors review the recent progress in the resistive random access memory (ReRAM) technology, one of the most promising emerging nonvolatile memories, in which both electronic and electrochemical effects play important roles in the non-volatile functionalities.
Abstract: In this paper, we review the recent progress in the resistive random access memory (ReRAM) technology, one of the most promising emerging nonvolatile memories, in which both electronic and electrochemical effects play important roles in the nonvolatile functionalities. First, we provide a brief historical overview of the research in this field. We also provide a technological overview and the epoch-making achievements, followed by an account of the current understanding of both bipolar and unipolar ReRAM operations. Finally, we summarize the challenges facing the ReRAM technology as it moves toward the beyond-2X-nm generation of nonvolatile memories and the so-called beyond complementary metal-oxide-semiconductor (CMOS) device.

824 citations

Journal ArticleDOI
26 Aug 2011-ACS Nano
TL;DR: This study shows experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems and confirms that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses plays a crucial role in determining the effectiveness of the transition.
Abstract: “Memory” is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is i...

810 citations

Journal ArticleDOI
01 Sep 2019-Nature
TL;DR: The opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems are reviewed, and the prospects for computational and non-computational applications are considered.
Abstract: The development of silicon semiconductor technology has produced breakthroughs in electronics—from the microprocessor in the late 1960s to early 1970s, to automation, computers and smartphones—by downscaling the physical size of devices and wires to the nanometre regime. Now, graphene and related two-dimensional (2D) materials offer prospects of unprecedented advances in device performance at the atomic limit, and a synergistic combination of 2D materials with silicon chips promises a heterogeneous platform to deliver massively enhanced potential based on silicon technology. Integration is achieved via three-dimensional monolithic construction of multifunctional high-rise 2D silicon chips, enabling enhanced performance by exploiting the vertical direction and the functional diversification of the silicon platform for applications in opto-electronics and sensing. Here we review the opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems, and also consider the prospects for computational and non-computational applications. Progress in integrating atomically thin two-dimensional materials with silicon-based technology is reviewed, together with the associated opportunities and challenges, and a roadmap for future applications is presented.

804 citations