scispace - formally typeset
Search or ask a question

Showing papers by "Yu Huang published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors review the recent progress and challenges of 2D van der Waals interactions and offer a perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics.
Abstract: Two-dimensional layered materials (2DLMs) have been a central focus of materials research since the discovery of graphene just over a decade ago. Each layer in 2DLMs consists of a covalently bonded, dangling-bond-free lattice and is weakly bound to neighbouring layers by van der Waals interactions. This makes it feasible to isolate, mix and match highly disparate atomic layers to create a wide range of van der Waals heterostructures (vdWHs) without the constraints of lattice matching and processing compatibility. Exploiting the novel properties in these vdWHs with diverse layering of metals, semiconductors or insulators, new designs of electronic devices emerge, including tunnelling transistors, barristors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics and light-emitting devices with unprecedented characteristics or unique functionalities. We review the recent progress and challenges, and offer our perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics. With a dangling-bond-free surface, two dimensional layered materials (2DLMs) can enable the creation of diverse van der Waals heterostructures (vdWHs) without the conventional constraint of lattice matching or process compatibility. This Review discusses the recent advances in exploring 2DLM vdWHs for future electronics and optoelectronics.

1,850 citations


Journal ArticleDOI
16 Dec 2016-Science
TL;DR: Reactive molecular dynamics simulations suggest that highly stressed, undercoordinated rhombus-rich surface configurations of the jagged nanowires enhance ORR activity versus more relaxed surfaces.
Abstract: Improving the platinum (Pt) mass activity for the oxygen reduction reaction (ORR) requires optimization of both the specific activity and the electrochemically active surface area (ECSA). We found that solution-synthesized Pt/NiO core/shell nanowires can be converted into PtNi alloy nanowires through a thermal annealing process and then transformed into jagged Pt nanowires via electrochemical dealloying. The jagged nanowires exhibit an ECSA of 118 square meters per gram of Pt and a specific activity of 11.5 milliamperes per square centimeter for ORR (at 0.9 volts versus reversible hydrogen electrode), yielding a mass activity of 13.6 amperes per milligram of Pt, nearly double previously reported best values. Reactive molecular dynamics simulations suggest that highly stressed, undercoordinated rhombus-rich surface configurations of the jagged nanowires enhance ORR activity versus more relaxed surfaces.

1,168 citations


Journal ArticleDOI
22 Dec 2016-Nature
TL;DR: The results indicate that integrin–Gα13–RhoA–YAP pathway holds promise as a novel drug target against atherosclerosis.
Abstract: The Yorkie homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1), effectors of the Hippo pathway, have been identified as mediators for mechanical stimuli. However, the role of YAP/TAZ in haemodynamics-induced mechanotransduction and pathogenesis of atherosclerosis remains unclear. Here we show that endothelial YAP/TAZ activity is regulated by different patterns of blood flow, and YAP/TAZ inhibition suppresses inflammation and retards atherogenesis. Atheroprone-disturbed flow increases whereas atheroprotective unidirectional shear stress inhibits YAP/TAZ activity. Unidirectional shear stress activates integrin and promotes integrin-Gα13 interaction, leading to RhoA inhibition and YAP phosphorylation and suppression. YAP/TAZ inhibition suppresses JNK signalling and downregulates pro-inflammatory genes expression, thereby reducing monocyte attachment and infiltration. In vivo endothelial-specific YAP overexpression exacerbates, while CRISPR/Cas9-mediated Yap knockdown in endothelium retards, plaque formation in ApoE-/- mice. We also show several existing anti-atherosclerotic agents such as statins inhibit YAP/TAZ transactivation. On the other hand, simvastatin fails to suppress constitutively active YAP/TAZ-induced pro-inflammatory gene expression in endothelial cells, indicating that YAP/TAZ inhibition could contribute to the anti-inflammatory effect of simvastatin. Furthermore, activation of integrin by oral administration of MnCl2 reduces plaque formation. Taken together, our results indicate that integrin-Gα13-RhoA-YAP pathway holds promise as a novel drug target against atherosclerosis.

409 citations


Journal ArticleDOI
TL;DR: A systematic control of the electronic properties of 2D-TMDs is demonstrated by creating mixed alloys of the intrinsically p-type WSe2 and intrinsically n-type WS2 with variable alloy compositions and it is shown that a series of WS2xSe2-2x alloy nanosheets can be synthesized with fully tunable chemical compositions and optical properties.
Abstract: Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently emerged as a new class of atomically thin semiconductors for diverse electronic, optoelectronic, and valleytronic applications. To explore the full potential of these 2D semiconductors requires a precise control of their band gap and electronic properties, which represents a significant challenge in 2D material systems. Here we demonstrate a systematic control of the electronic properties of 2D-TMDs by creating mixed alloys of the intrinsically p-type WSe2 and intrinsically n-type WS2 with variable alloy compositions. We show that a series of WS2xSe2-2x alloy nanosheets can be synthesized with fully tunable chemical compositions and optical properties. Electrical transport studies using back-gated field effect transistors demonstrate that charge carrier types and threshold voltages of the alloy nanosheet transistors can be systematically tuned by adjusting the alloy composition. A highly p-type behavior is observed in selenium-rich alloy, which gradually shifts to lightly p-type, and then switches to lightly n-type characteristics with the increasing sulfur atomic ratio, and eventually evolves into highly n-doped semiconductors in sulfur-rich alloys. The synthesis of WS2xSe2-2x nanosheets with tunable optical and electronic properties represents a critical step toward rational design of 2D electronics with tailored spectral responses and device characteristics.

278 citations


Journal ArticleDOI
TL;DR: In this paper, a positive matrix factorization procedure was developed to apportion the sources of organic aerosols based on their mass spectra using the multilinear engine (ME-2) controlled via the source finder (SoFi).
Abstract: . During winter 2013–2014 aerosol mass spectrometer (AMS) measurements were conducted for the first time with a novel PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) lens in two major cities of China: Xi'an and Beijing. We denote the periods with visibility below 2 km as extreme haze and refer to the rest as reference periods. During the measurements in Xi'an an extreme haze covered the city for about a week and the total non-refractory (NR)-PM2.5 mass fraction reached peak concentrations of over 1000 µg m−3. During the measurements in Beijing two extreme haze events occurred, but the temporal extent and the total concentrations reached during these events were lower than in Xi'an. Average PM2.5 concentrations of 537 ± 146 and 243 ± 47 µg m−3 (including NR species and equivalent black carbon, eBC) were recorded during the extreme haze events in Xi'an and Beijing, respectively. During the reference periods the measured average concentrations were 140 ± 99 µg m−3 in Xi'an and 75 ± 61 µg m−3 in Beijing. The relative composition of the NR-PM2.5 evolved substantially during the extreme haze periods, with increased contributions of the inorganic components (mostly sulfate and nitrate). Our results suggest that the high relative humidity present during the extreme haze events had a strong effect on the increase of sulfate mass (via aqueous phase oxidation of sulfur dioxide). Another relevant characteristic of the extreme haze is the size of the measured particles. During the extreme haze events, the AMS showed much larger particles, with a volume weighted mode at about 800 to 1000 nm, in contrast to about 400 nm during reference periods. These large particle sizes made the use of the PM2.5 inlet crucial, especially during the severe haze events, where 39 ± 5 % of the mass would have been lost in the conventional PM1 (particulate matter with aerodynamic diameter ≤ 1 µm) inlet. A novel positive matrix factorization procedure was developed to apportion the sources of organic aerosols (OA) based on their mass spectra using the multilinear engine (ME-2) controlled via the source finder (SoFi). The procedure allows for an effective exploration of the solution space, a more objective selection of the best solution and an estimation of the rotational uncertainties. Our results clearly show an increase of the oxygenated organic aerosol (OOA) mass during extreme haze events. The contribution of OOA to the total OA increased from the reference to the extreme haze periods from 16.2 ± 1.1 to 31.3 ± 1.5 % in Xi'an and from 15.7 ± 0.7 to 25.0 ± 1.2 % in Beijing. By contrast, during the reference periods the total OA mass was dominated by domestic emissions of primary aerosols from biomass burning in Xi'an (42.2 ± 1.5 % of OA) and coal combustion in Beijing (55.2 ± 1.6 % of OA). These two sources are also mostly responsible for extremely high polycyclic aromatic hydrocarbon (PAH) concentrations measured with the AMS (campaign average of 2.1 ± 2.0 µg m−3 and frequent peak concentrations above 10 µg m−3). To the best of our knowledge, this is the first data set where the simultaneous extraction of these two primary sources could be achieved in China by conducting on-line AMS measurements at two areas with contrasted emission patterns.

268 citations


Journal ArticleDOI
TL;DR: The traditional air cleaning methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde degradation in indoor environments are reviewed and summarized.
Abstract: Volatile organic compounds (VOCs) are ubiquitous in indoor environments. Inhalation of VOCs can cause irritation, difficulty breathing, and nausea, and damage the central nervous system as well as other organs. Formaldehyde is a particularly important VOC as it is even a carcinogen. Removal of VOCs is thus critical to control indoor air quality (IAQ). Photocatalytic oxidation has demonstrated feasibility to remove toxic VOCs and formaldehyde from indoor environments. The technique is highly-chemical stable, inexpensive, non-toxic, and capable of removing a wide variety of organics under light irradiation. In this paper, we review and summarize the traditional air cleaning methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde degradation in indoor environments. Influencing factors such as temperature, relative humidity, deactivation and reactivations of the photocatalyst are discussed. Aspects of the application of the photocatalytic technique to improve the IAQ are suggested.

235 citations


Journal ArticleDOI
TL;DR: A systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition in perovskite using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study finds that the phase transition temperature decreases with reducing microplate thickness.
Abstract: Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.

217 citations


Journal ArticleDOI
TL;DR: In this paper, layer-structured Bi2O2CO3/g-C3N4 heterojunction photocatalysts were successfully prepared via one-pot hydrothermal method for the first time.
Abstract: Layer-structured Bi2O2CO3/g-C3N4 heterojunction photocatalysts were successfully prepared via one-pot hydrothermal method for the first time, in which graphitic carbon nitride (g-C3N4) served as the self-sacrificial reagent to supply carbonate anions simultaneously. Our results showed that the in situ fabricated Bi2O2CO3/g-C3N4 heterojunction exhibited superior visible-light-driven photocatalytic activity for NO photocatalytic oxidation, which can be ascribed to the morphology and structure modulation during the sacrificial synthesis processes. Heterojunctions formation pathways underlying temperature- and time-dependent structure evolution were discussed in detail. The sample fabricated at 160 °C for 12 h (BOC-CN-160) showed high stability and durability, and the highest NO removal rate which is up to 34.8% under visible light irradiation. Results from photocurrent tests and electrochemical impedance spectroscopy (EIS) demonstrated that the BOC-CN-160 sample presents much more effective interface charge separation efficiency, which can contribute to its remarkably improved photocatalytic performance. Reactive radicals during the photocatalysis processes were identified by electron spin resonance (ESR) study. Combined with the quantification of reaction intermediates, the photocatalytic degradation mechanism of NO over Bi2O2CO3/g-C3N4 heterojunction photocatalyst was proposed. The novel approach developed in this study may be further extended to synthesize a series of novel and highly efficient g-C3N4-based carbonate heterojunction photocatalysts for visible light-harvesting and energy conversion applications.

202 citations


Journal Article
TL;DR: In this paper, the authors demonstrate a systematic control of the electronic properties of 2D-TMDs by creating mixed alloys of the intrinsically p-type WSe2 and intrinsically n-type WS2 with variable alloy compositions and show that a series of WS2xSe2-2x alloy nanosheets can be synthesized with fully tunable chemical compositions and optical properties.
Abstract: Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently emerged as a new class of atomically thin semiconductors for diverse electronic, optoelectronic, and valleytronic applications. To explore the full potential of these 2D semiconductors requires a precise control of their band gap and electronic properties, which represents a significant challenge in 2D material systems. Here we demonstrate a systematic control of the electronic properties of 2D-TMDs by creating mixed alloys of the intrinsically p-type WSe2 and intrinsically n-type WS2 with variable alloy compositions. We show that a series of WS2xSe2-2x alloy nanosheets can be synthesized with fully tunable chemical compositions and optical properties. Electrical transport studies using back-gated field effect transistors demonstrate that charge carrier types and threshold voltages of the alloy nanosheet transistors can be systematically tuned by adjusting the alloy composition. A highly p-type behavior is observed in selenium-rich alloy, which gradually shifts to lightly p-type, and then switches to lightly n-type characteristics with the increasing sulfur atomic ratio, and eventually evolves into highly n-doped semiconductors in sulfur-rich alloys. The synthesis of WS2xSe2-2x nanosheets with tunable optical and electronic properties represents a critical step toward rational design of 2D electronics with tailored spectral responses and device characteristics. © 2015 American Chemical Society.

184 citations


Journal ArticleDOI
TL;DR: This work reports the creation of novel heterojunction devices based on perovskites and two-dimensional (2D) crystals by taking advantage of the layered characteristic of lead iodide (PbI2) and vapor-phase intercalation and shows that a graphene/perovskite/graphene vertical stack can deliver a highest photoresponsivity and photoconductive gain.
Abstract: The recently emerged organohalide perovskites (e.g., CH3NH3PbI3) have drawn intense attention for high efficiency solar cells. However, with a considerable solubility in many solvents, these perovskites are not typically compatible with conventional lithography processes for more complicated device fabrications that are important for both fundamental studies and technological applications. Here, we report the creation of novel heterojunction devices based on perovskites and two-dimensional (2D) crystals by taking advantage of the layered characteristic of lead iodide (PbI2) and vapor-phase intercalation. We show that a graphene/perovskite/graphene vertical stack can deliver a highest photoresponsivity of ∼950 A/W and photoconductive gain of ∼2200, and a graphene/WSe2/perovskite/graphene heterojunction can display a high on/off ratio (∼106) transistor behavior with distinct gate-tunable diode characteristics and open-circuit voltages. Such unique perovskite–2D heterostructures have significant potential fo...

177 citations


Journal ArticleDOI
TL;DR: The results reported herein suggest that enhanced catalysts can be developed by engineering the structure/composition of the nanocry crystals by simply treating the highly composition segregated Pt-Ni nanocrystals with acetic acid overnight, which are far better than those of commercial Pt/C catalyst.
Abstract: Highly open metallic nanoframes represent an emerging class of new nanostructures for advanced catalytic applications due to their fancy outline and largely increased accessible surface area. However, to date, the creation of bimetallic nanoframes with tunable structure remains a challenge. Herein, we develop a simple yet efficient chemical method that allows the preparation of highly composition segregated Pt-Ni nanocrystals with controllable shape and high yield. The selective use of dodecyltrimethylammonium chloride (DTAC) and control of oleylamine (OM)/oleic acid (OA) ratio are critical to the controllable creation of highly composition segregated Pt-Ni nanocrystals. While DTAC mediates the compositional anisotropic growth, the OM/OA ratio controls the shapes of the obtained highly composition segregated Pt-Ni nanocrystals. To the best of our knowledge, this is the first report on composition segregated tetrahexahedral Pt-Ni NCs. Importantly, by simply treating the highly composition segregated Pt-Ni nanocrystals with acetic acid overnight, those solid Pt-Ni nanocrystals can be readily transformed into highly open Pt-Ni nanoframes with hardly changed shape and size. The resulting highly open Pt-Ni nanoframes are high-performance electrocatalysts for both oxygen reduction reaction and alcohol oxidations, which are far better than those of commercial Pt/C catalyst. Our results reported herein suggest that enhanced catalysts can be developed by engineering the structure/composition of the nanocrystals.

Journal ArticleDOI
TL;DR: In this article, a freestanding three-dimensional (3D) graphene framework for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode was presented. But the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect.
Abstract: Lithium–sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium–sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene framework for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene–sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene–sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 96 mAh·g–1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications.

Journal ArticleDOI
TL;DR: This work explores the angle-dependent structural colors of photonic crystals to provide abundant optical information, thereby generating a rainbow-color chip to realize the convenient recognition of multiple analytes.
Abstract: A critical requirement for the successful recognition of multiple analytes is the acquisition of abundant sensing information. However, for this to be achieved requires massive chemical sensors or multiplex materials, which complicates the multianalysis. Thus, there is a need to develop a strategy for the facile and efficient recognition of multiple analytes. Herein, we explore the angle-dependent structural colors of photonic crystals to provide abundant optical information, thereby generating a rainbow-color chip to realize the convenient recognition of multiple analytes. By simply using a multiangle analysis method, the monophotonic crystal matrix chip can differentially enhance fluorescence signals over broad spectral ranges, thereby resulting in abundant sensing information for highly efficient multiple analysis. Twelve saccharides with similar structures, as well as saccharides in different concentrations and mixtures, were successfully discriminated.

Journal ArticleDOI
TL;DR: This work provides a facile and controllable route to fabricate plasmonic Ag-SrTiO3 nanocomposite photocatalyst featuring high visible light activity and selectivity for NO abatement.
Abstract: Harnessing inexhaustible solar energy for photocatalytic disposal of nitrogen oxides is of great significance nowadays. In this study, Ag–SrTiO3 nanocomposites (Ag–STO) were synthesized via one-pot solvothermal method for the first time. The deposition of Ag nanoparticles incurs a broad plasmonic resonance absorption in the visible light range, resulting in enhanced visible light driven activity on NO removal in comparison with pristine SrTiO3. The Ag loading amount has a significant influence on light absorption properties of Ag–STO, which further affects the photocatalytic efficiency. It was shown that 0.5% Ag loading onto SrTiO3 (in mass ratio) could remove 30% of NO in a single reaction path under visible light irradiation, which is twice higher than that achieved on pristine SrTiO3. Most importantly, the generation of harmful intermediate (NO2) is largely inhibited over SrTiO3 and Ag–STO nanocomposites, which can be ascribed to the basic surface property of strontium sites. As identified by electron ...

Journal ArticleDOI
TL;DR: ROS plays a significant role in producing arrhythmic substrate andTherapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels that may relieve oxidative stress and in turn prevent arrhythmmic complications in patients with diabetes, hypertension, and heart failure.
Abstract: Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodelling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation, mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signalling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signalling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension and heart failure.

Journal ArticleDOI
TL;DR: A strategy to synthesize the ultrasmall donut-shaped Cu7 S4 @MoS2 hetero-nanoframes with abundant active MoS2 edge sites as alternatives to platinum (Pt) as efficient HER electrocatalysts is reported.
Abstract: Increasing the active edge sites of molybdenum disulfide (MoS2) is an efficient strategy to improve the overall activity of MoS2 for the hydrogen-evolution reaction (HER). Herein, we report a strategy to synthesize the ultrasmall donut-shaped Cu7S4@MoS2 hetero-nanoframes with abundant active MoS2 edge sites as alternatives to platinum (Pt) as efficient HER electrocatalysts. These nanoframes demonstrate an ultrahigh activity with 200 mA cm−2 current density at only 206 mV overpotential using a carbon-rod counter electrode. The finding may provide guidelines for the design and synthesis of efficient and non-precious chalcogenide nanoframe catalysts.

Journal ArticleDOI
TL;DR: The hypothesis that delivery of microRNA (miR)-146a and miR-181b with an E-selectin-targeting multistage vector to inflamed endothelium covering atherosclerotic plaques inhibits atherosclerosis is supported.
Abstract: E-selectin is a surface marker of endothelial cell (EC) inflammation, one of the hallmarks of atherogenesis. Thus, we tested the hypothesis that delivery of microRNA (miR)-146a and miR-181b with an E-selectin-targeting multistage vector (ESTA-MSV) to inflamed endothelium covering atherosclerotic plaques inhibits atherosclerosis. Cy5-conjugated miR-146a and miR-181b were packaged in polyethylene glycol-polyethyleneimine (PEG/PEI) nanoparticles and loaded into ESTA-MSV microparticles. Both miRs were downregulated in tumor necrosis factor (TNF)-α-treated ECs. Transfection of TNF-α-treated mouse aortas and cultured ECs with miRs was more efficient with ESTA-MSV than with the PEG/PEI. Likewise, miR-146a/-181b packaged in ESTA-MSV efficiently suppressed the chemokines, CCL2, CCL5, CCL8, and CXCL9, and monocyte adhesion to ECs. Complementary in vivo tests were conducted in male apolipoprotein E-deficient mice fed a Western diet and injected intravenously with the particles prepared as above biweekly for 12 weeks. Treatment with miRs packaged in ESTA-MSV but not in PEG/PEI reduced atherosclerotic plaque size. Concurrently, vascular inflammation markers, including macrophages in aortic root lesions and chemokine expression in aortic tissues were reduced while the vascular smooth muscle cells and collagen increased in plaques from ESTA-MSV/miRs-treated vs. vehicle-treated mice. Our data supported our hypothesis that ESTA-MSV microparticle-mediated delivery of miR-146a/-181b ameliorates endothelial inflammation and atherosclerosis.

Journal ArticleDOI
TL;DR: For the first time, it is demonstrated that the 2DSC transistors can offer comparable performance to the 2017 target for silicon transistors in International Technology Roadmap for Semiconductors (ITRS), marking an important milestone in 2 DSC electronics.
Abstract: Two-dimensional semiconductors (2DSCs) such as molybdenum disulfide (MoS2) have attracted intense interest as an alternative electronic material in the postsilicon era. However, the ON-current density achieved in 2DSC transistors to date is considerably lower than that of silicon devices, and it remains an open question whether 2DSC transistors can offer competitive performance. A high current device requires simultaneous minimization of the contact resistance and channel length, which is a nontrivial challenge for atomically thin 2DSCs, since the typical low contact resistance approaches for 2DSCs either degrade the electronic properties of the channel or are incompatible with the fabrication process for short channel devices. Here, we report a new approach toward high-performance MoS2 transistors by using a physically assembled nanowire as a lift-off mask to create ultrashort channel devices with pristine MoS2 channel and self-aligned low resistance metal/graphene hybrid contact. With the optimized cont...

Journal ArticleDOI
TL;DR: Ca was absolutely the most abundant specie among the 22 detected elements in construction dust samples and high Ca/Al ratio was a good marker to distinguish urban fugitive dust from Asian dust and Chinese loess.

Journal ArticleDOI
27 Jun 2016-ACS Nano
TL;DR: This study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices and suggests that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in pervskites.
Abstract: Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for opt...

Journal ArticleDOI
TL;DR: Investigating mechanisms by which herbal compounds act at the cellular levels, including vascular smooth muscle cells, endothelial cells, cardiomyocytes and immune cells, is elaborate.
Abstract: Cardiovascular diseases are the principal cause of death worldwide. The potentially serious adverse effects of therapeutic drugs lead to growing awareness of the role of Chinese herbal medicine in the treatment of cardiovascular diseases. Chinese herbal medicine has been widely used in many countries especially in China from antiquity, however, the mechanisms by which herbal medicine acts in the prevention and treatment of cardiovascular diseases are far from clear. In this review, we briefly describe the characteristics of Chinese herbal medicine by comparing with western medicine. Then we summarize the formulae and herbs/natural products applied in the clinic and animal studies being sorted according to the specific cardiovascular diseases. Most importantly, we elaborate the existing investigations into mechanisms by which herbal compounds act at the cellular levels, including vascular smooth muscle cells, endothelial cells, cardiomyocytes and immune cells. Future research should focus on well-designed clinic trial, in-depth mechanic study, investigations on side effects of herbs and drug interactions. Studies on developing new agents with effectiveness and safety from traditional Chinese medicine is promising for prevention and treatment of patients with cardiovascular diseases.

Journal ArticleDOI
TL;DR: A novel role for SIRT3 is highlighted in the protective effect of H2S against oxidant damage in the endothelium both in vitro and in vivo, thereby reducing oxidant-provoked vascular endothelial dysfunction.
Abstract: Aim: Oxidative stress is a key contributor to endothelial dysfunction and associated cardiovascular pathogenesis. Hydrogen sulfide (H2S) is an antioxidant gasotransmitter that protects endothelial cells against oxidative stress. Sirtuin3 (SIRT3), which belongs to the silent information regulator 2 (SIR2) family, is an important deacetylase under oxidative stress. H2S is able to regulate the activity of several sirtuins. The present study aims to investigate the role of SIRT3 in the antioxidant effect of H2S in endothelial cells. Results: Cultured EA.hy926 endothelial cells were exposed to hydrogen peroxide (H2O2) as a model of oxidative stress-induced cell injury. GYY4137, a slow-releasing H2S donor, improved cell viability, reduced oxidative stress and apoptosis, and improved mitochondrial function following H2O2 treatment. H2S reversed the stimulation of MAPK phosphorylation, downregulation of SIRT3 mRNA and reduction of the superoxide dismutase 2 and isocitrate dehydrogenase 2 expression which...

Journal ArticleDOI
TL;DR: In this paper, bismuth nanoparticles anchored ZnWO4 microspheres were used as robust and efficient photocatalysts for NO removal at parts-per-billion level under visible light irradiation.
Abstract: In this work, bismuth (Bi) nanoparticle anchored ZnWO4 microspheres (Bi/ZnWO4) were prepared and used as robust and efficient photocatalysts for NO removal at parts-per-billion level under visible light irradiation. The as-synthesized composite with a proper mass ratio of Bi (50%) displayed a higher reaction rate (0.067 min–1) than its single counterparts ZnWO4 (0.004 min–1) and Bi (0.027 min–1), respectively. Due to the surface plasmon resonance (SPR) effect of Bi nanoparticles, the Bi/ZnWO4 composites showed broad light absorption in the visible spectrum. Moreover, the formation of the Bi/ZnWO4 heterointerface promoted the separation of photoexcited electron–hole pairs, which is demonstrated by the increased photocurrent density in comparison to the pristine materials. The above characteristics endowed the Bi/ZnWO4 composites with superior photocatalytic activity for NO removal. The radical scavanger tests revealed that the superoxide radical was the main active species to initiate NO oxidation, while t...

Journal ArticleDOI
01 Apr 2016-Diabetes
TL;DR: It is concluded that IPo activates mitoSTAT3 through APN/AdipoR1/Cav3 pathway to confer cardioprotection, whereas in diabetes, IPo loses cardioprotsection due to impaired APN or Adipo R1/cav3 signaling.
Abstract: Signal transducer and activator of transcription 3 (STAT3) activation is key for ischemic postconditioning (IPo) to attenuate myocardial ischemia-reperfusion injury (MIRI), but IPo loses cardioprotection in diabetes in which cardiac STAT3 activation is impaired and adiponectin (APN) reduced. We found that IPo increased postischemic cardiomyocyte-derived APN, activated mitochondrial STAT3 (mitoSTAT3), improved mitochondrial function, and attenuated MIRI in wild-type but not in APN knockout (Adipo(-/-)) mice subjected to 30 min coronary occlusion, followed by 2 or 24 h of reperfusion. Hypoxic postconditioning-induced protection against hypoxia/reoxygenation injury was lost in Adipo(-/-) cardiomyocytes but restored by recombinant APN, but this APN beneficial effect was abolished by specific STAT3 or APN receptor 1 (AdipoR1) gene knockdown, or caveolin-3 (Cav3) disruption. APN activated cardiac STAT3 and restored IPo cardioprotection in 4-week diabetic rats where AdipoR1 and Cav3 were functionally interactive but not in 8-week diabetic rats whose cardiac Cav3 was severely reduced and AdipoR1/Cav3 signaling impaired. We concluded that IPo activates mitoSTAT3 through APN/AdipoR1/Cav3 pathway to confer cardioprotection, whereas in diabetes, IPo loses cardioprotection due to impaired APN/AdipoR1/Cav3 signaling. Therefore, effective means that may concomitantly activate APN and repair APN signaling (i.e., AdipoR1/Cav3) in diabetes may represent promising avenues in the treatment of MIRI in diabetes.

Journal ArticleDOI
TL;DR: Characterization results showed that the as-prepared Bi2O3/(BiO)2CO3 heterojunctions possessed distinct crystal interface and exhibited pronounced structural and optical modulation, resulting in significant improvement of their photocatalytic activity for NO removal under simulated solar light irradiation compared with pristine (BiO), which is consistent with the theoretical analysis.
Abstract: Exploring the full potential use of heterojunction photocatalysts containing bismuth has attracted considerable interest in recent years. Fabrication of well-defined heterojunction photocatalysts with precise modulation of their chemical composition is crucial for tuning their optical properties and photocatalytic activity. In this study, we fabricated nanoplate α-Bi2O3/(BiO)2CO3 heterojunctions through in situ thermal treatment of (BiO)2CO3 nanoplates synthesized using a facile hydrothermal process. Characterization results showed that the as-prepared Bi2O3/(BiO)2CO3 heterojunctions possessed distinct crystal interface and exhibited pronounced structural and optical modulation, resulting in significant improvement of their photocatalytic activity for NO removal under simulated solar light irradiation compared with pristine (BiO)2CO3. Electron spin resonance spectroscopy showed that ⋅OH radicals were the major reactive species involved in NO degradation, which is consistent with the theoretical analysis. The heterojunction formation can not only broaden the light absorption range but also improve the charge separation of photo-induced electron-hole pairs. This study is an important advancement in the development of semiconductor heterojunctions towards achieving functional photocatalysts.

Journal ArticleDOI
TL;DR: It is shown that a hyperaccumulation effect can allow efficient enrichment of selected metal ions in the halophytic plants, which can be converted into three-dimensional carbon/metal oxide (3DC/MOx) nanocomposites with both the composition and structure hierarchy.
Abstract: Natural plants consist of a hierarchical architecture featuring an intricate network of highly interconnected struts and channels that not only ensure extraordinary structural stability, but also allow efficient transport of nutrients and electrolytes throughout the entire plants. Here we show that a hyperaccumulation effect can allow efficient enrichment of selected metal ions (for example, Sn2+, Mn2+) in the halophytic plants, which can then be converted into three-dimensional carbon/metal oxide (3DC/MOx) nanocomposites with both the composition and structure hierarchy. The nanocomposites retain the 3D hierarchical porous network structure, with ultrafine MOx nanoparticles uniformly distributed in multi-layers of carbon derived from the cell wall, cytomembrane and tonoplast. It can simultaneously ensure efficient electron and ion transport and help withstand the mechanical stress during the repeated electrochemical cycles, enabling the active material to combine high specific capacities typical of batteries and the cycling stability of supercapacitors. Hyperaccumulation can allow facile enrichment of metal ions in halophytic plants. Here, the authors use the effect to convert plant structures into hierarchical carbon/metal-oxide nanocomposites and demonstrate the structures as battery electrodes combining high power density and excellent cycling stability.

Journal ArticleDOI
TL;DR: It is reported that high sodium intake remarkably increased natriuresis in wild-type mice, but this effect was blunted in adipose-specific PPARδ knockout mice and diabetic mice, providing insights into the distinctive role of the PParδ/adiponectin/SGLT2 pathway in the regulation of sodium and glucose homeostasis.

Journal ArticleDOI
01 May 2016-Diabetes
TL;DR: This study demonstrates for the first time to the knowledge that miR-200c is a new mediator of diabetic endothelial dysfunction and inhibition of miR -200c rescues EDRs in diabetic mice, and suggests the potential usefulness ofmiR- 200c as the target for drug intervention against diabetic vascular complications.
Abstract: Endothelial dysfunction plays a crucial role in the development of diabetic vasculopathy. Our initial quantitative PCR results showed an increased miR-200c expression in arteries from diabetic mice and patients with diabetes. However, whether miR-200c is involved in diabetic endothelial dysfunction is unknown. Overexpression of miR-200c impaired endothelium-dependent relaxations (EDRs) in nondiabetic mouse aortas, whereas suppression of miR-200c by anti-miR-200c enhanced EDRs in diabetic db/db mice. miR-200c suppressed ZEB1 expression, and ZEB1 overexpression ameliorated endothelial dysfunction induced by miR-200c or associated with diabetes. More importantly, overexpression of anti-miR-200c or ZEB1 in vivo attenuated miR-200c expression and improved EDRs in db/db mice. Mechanistic study with the use of COX-2(-/-) mice revealed that COX-2 mediated miR-200c-induced endothelial dysfunction and that miR-200c upregulated COX-2 expression in endothelial cells through suppression of ZEB1 and increased production of prostaglandin E2, which also reduced EDR. This study demonstrates for the first time to our knowledge that miR-200c is a new mediator of diabetic endothelial dysfunction and inhibition of miR-200c rescues EDRs in diabetic mice. These new findings suggest the potential usefulness of miR-200c as the target for drug intervention against diabetic vascular complications.

Journal ArticleDOI
TL;DR: The preparation of various copper- and nitrogen-doped carbon materials as highly efficient ORR catalysts by pyrolyzing porphyrin based metal organic frameworks are reported and the effects of air impurities during the thermal carbonization process are investigated.
Abstract: An efficient non-noble metal catalyst for the oxygen reduction reaction (ORR) is of great importance for the fabrication of cost-effective fuel cells. Nitrogen-doped carbons with various transition metal co-dopants have emerged as attractive candidates to replace the expensive platinum catalysts. Here we report the preparation of various copper- and nitrogen-doped carbon materials as highly efficient ORR catalysts by pyrolyzing porphyrin based metal organic frameworks and investigate the effects of air impurities during the thermal carbonization process. Our results indicate that the introduction of air impurities can significantly improve ORR activity in nitrogen-doped carbon and the addition of copper co-dopant further enhances the ORR activity to exceed that of platinum. Systematic structural characterization and electrochemical studies demonstrate that the air-impurity-treated samples show considerably higher surface area and electron transfer numbers, suggesting that the partial etching of the carbon...

Journal ArticleDOI
TL;DR: The Eley-Rideal mechanism with HCl preadsorption can be determined, and subsequent X-ray photoelectron spectroscopy analysis verifies the appearance of Cl species and oxidized mercury, exhibiting the consistency with experiments.
Abstract: To investigate the mechanism of Hg0 adsorption on the α-Fe2O3(001) surface in the presence of HCl, which is considered to be beneficial for Hg0 removal, theoretical calculations based on density functional theory as well as corresponding experiments are carried out. HCl adsorption is first performed on the α-Fe2O3(001) surface, and the Hg0 adsorption on HCl-adsorbed α-Fe2O3(001) surface is subsequently researched, demonstrating that HCl dissociates on the surface of α-Fe2O3, improving the Hg0 adsorption reactivity. With further chlorination of the α-Fe2O3(001) surface, FeCl3 can be achieved and the adsorption energy of Hg0 on the FeCl3 surface reaches −104.2 kJ/mol, representing strong chemisorption. Meanwhile, a group of designed experiments, including Hg0 adsorption on HCl-preadsorbed α-Fe2O3 as well as the coadsorption of both gaseous components, are respectively performed to explore the pathways of Hg0 transformation. Combining computational and experimental results together, the Eley–Rideal mechanism...