scispace - formally typeset
Search or ask a question
Author

Yu Huang

Bio: Yu Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 136, co-authored 1492 publications receiving 89209 citations. Previous affiliations of Yu Huang include The Chinese University of Hong Kong & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a brief overview of the challenges associated with the anode alcohol oxidation reaction (AOR) in alkaline electrolyte, the key performance metrics, and the evaluation protocols for benchmarking AOR electrocatalysts are presented, followed by a summary of the recent advances in the noble metal based AOR (P, Pd and Rh) with an emphasis on the design criteria for improving the specific activity and electrochemical surface area to ultimately deliver high MA while at the same time ensuring long term durability.
Abstract: Alkaline direct alcohol fuel cells (ADAFCs) represent an attractive alternative to hydrogen fuel cells for the more convenient storage, transportation, and lower cost of alcohols (e.g., methanol and ethanol) when compared with compressed hydrogen. However, the anode alcohol oxidation reaction (AOR) is generally plagued with high overpotential and sluggish kinetics, and often requires noble metal‐based electrocatalysts to accelerate the reaction kinetics. To this end, the development of efficient AOR electrocatalysts with high mass activity (MA), high durability, high Faradaic efficiency (FE), and low overpotential is central for realizing practical ADAFCs. Here, in this minireview, a brief introduction of the fundamental challenges associated with AOR in alkaline electrolyte, the key performance metrics, and the evaluation protocols for benchmarking AOR electrocatalysts are presented, followed by a summary of the recent advances in the noble‐metal based AOR electrocatalysts (e.g., Pt, Pd, and Rh) with an emphasis on the design criteria for improving the specific activity and electrochemical surface area to ultimately deliver high MA while at the same time ensuring long term durability. The strategies to enhance FE and lower overpotential will also be discussed. Last, it is concluded with a brief perspective on the key challenges and future opportunities.

40 citations

Journal ArticleDOI
08 Nov 2016-ACS Nano
TL;DR: The electrical conductivity measured in Shewanella and Geobacter spp is an intriguing physical property that is the fundamental basis for possible extracellular electron transport (EET) pathways as discussed by the authors.
Abstract: The electrical conductivity measured in Shewanella and Geobacter spp is an intriguing physical property that is the fundamental basis for possible extracellular electron transport (EET) pathways There is considerable debate regarding the origins of the electrical conductivity reported in these microbial cellular structures, which is essential for deciphering the EET mechanism Here, we report systematic on-chip nanoelectronic investigations of both Shewanella and Geobacter spp under physiological conditions to elucidate the complex basis of electrical conductivity of both individual microbial cells and biofilms Concurrent electrical and electrochemical measurements of living Shewanella at both few-cell and the biofilm levels indicate that the apparent electrical conductivity can be traced to electrochemical-based electron transfer at the cell/electrode interface We further show that similar results and conclusions apply to the Geobacter spp Taken together, our study offers important insights into previously proposed physical models regarding microbial conductivities as well as EET pathways for Shewanella and Geobacter spp

40 citations

Journal ArticleDOI
TL;DR: In this article, a micro-protrusion array structure covered with nanoparticles was fabricated on the surface of 5083 Al alloy by nanosecond laser vertical crossed scanning to enhance the corrosion resistance of aluminum alloy.

40 citations

Journal ArticleDOI
TL;DR: It was concluded that the cholesterol-lowering activity of sesamin was mediated by promoting the fecal excretion of sterols and modulating the genes involved in cholesterol absorption and metabolism.
Abstract: Sesame seed is rich in sesamin. The present study was to (i) investigate the plasma cholesterol-lowering activity of dietary sesamin and (ii) examine the interaction of dietary sesamin with the gene expression of sterol transporters, enzymes, receptors, and proteins involved in cholesterol metabolism. Thirty hamsters were divided into three groups fed the control diet (CON) or one of two experimental diets containing 0.2% (SL) and 0.5% (SH) sesamin, respectively, for 6 weeks. Plasma total cholesterol (TC) levels in hamsters given the CON, SL, and SH diets were 6.62 ± 0.40, 5.32 ± 0.40, and 5.00 ± 0.44 mmol/L, respectively, indicating dietary sesamin could reduce plasma TC in a dose-dependent manner. Similarly, the excretion of total fecal neutral sterols was dose-dependently increased with the amounts of sesamin in diets (CON, 2.65 ± 0.57; SL, 4.30 ± 0.65; and SH, 5.84 ± 1.27 μmol/day). Addition of sesamin into diets was associated with down-regulation of mRNA of intestinal Niemann–Pick C1 like 1 protein ...

40 citations

Journal ArticleDOI
14 May 2020-Chem
TL;DR: In this article, the authors demonstrate redox control of crossplane charge transport in a vertical gold/self-assembled monolayer (SAM)/graphene tunnel junction composed of a ferrocene-based SAM.

40 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations