scispace - formally typeset
Search or ask a question
Author

Yu Huang

Bio: Yu Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 136, co-authored 1492 publications receiving 89209 citations. Previous affiliations of Yu Huang include The Chinese University of Hong Kong & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel method by using high-resolution parallel reaction monitoring (PRM) liquid chromatography-tandem mass spectrometry (LC-MS/MS) for accurate, reliable, widespread quantification of acylcarnitines, and without tedious sample preparation procedure is described.
Abstract: Acylcarnitines are exerting a variety of biological functions depending on the differences in lengths, saturation levels, and conjugation groups, which to a great extent contribute to the challenges of acylcarnitines quantifications due to various kinds of isomers. Here, we describe a novel method by using high-resolution parallel reaction monitoring (PRM) liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both reversed-phase and normal-phase column were used in order to get accurate, reliable, widespread quantification of acylcarnitines, and without tedious sample preparation procedure. The method provided the most comprehensive acylcarnitine profile with high-resolution MS and MS/MS confirmation to date. A total of 117 acylcarnitines were detected from plasma and urine samples. The application of targeted profiling of acylcarnitines in db/m+ control and db/db diabetic mice indicated incomplete amino acid and fatty acid oxidation on diabetic mice. Interestingly, the reduction of medium odd-number...

37 citations

Journal ArticleDOI
TL;DR: An enzyme-free amplification fluorescent strategy for ultra-sensitive detection of Hg2+ based on graphene oxide (GO) and catalytic hairpins self-assembly was reported in this paper.
Abstract: We have reported an enzyme-free amplification fluorescent strategy for ultra-sensitive detection of Hg2+ based on graphene oxide (GO) and catalytic hairpins self-assembly. Three fluorophore labled metastable hairpin DNA probes can be closely adsorbed onto GO surface via π−π stacking to quench the fluorescent signal. T-Hg2+-T interaction was utilized to induce the catalytic self-assembly of hairpins with the aid of helper DNA. The formed rigid DNA triangles containing double strand DNA (dsDNA) was stiffer, and released from the surface of GO to cause a “turn-on” fluorescent signal. The limit of detection was 25 pM, which was comparable with those reported amplification strategies. This strategy showed good selectivity for Hg2+, and promising application for real samples.

37 citations

Journal ArticleDOI
TL;DR: The effects of nuciferine on vasomotor tone and the underlying mechanism are determined and the proposed mechanism is described as “unknown”.
Abstract: Background and Purpose Nuciferine, a constituent of lotus leaf, is an aromatic ring-containing alkaloid, with antioxidative properties. We hypothesize nuciferine might affect vascular reactivity. This study aimed at determining the effects of nuciferine on vasomotor tone and the underlying mechanism Experimental Approach Nuciferine-induced relaxations in rings of rat main mesenteric arteries were measured by wire myographs. Endothelial NOS (eNOS) was determined by immunoblotting. Intracellular NO production in HUVECs and Ca2+ level in both HUVECs and vascular smooth muscle cells (VSMCs) from rat mesenteric arteries were assessed by fluorescence imaging. Key Results Nuciferine induced relaxations in arterial segments pre-contracted by KCl or phenylephrine. Nuciferine-elicited arterial relaxations were reduced by removal of endothelium or by pretreatment with the eNOS inhibitor L-NAME or the NO-sensitive guanylyl cyclase inhibitor ODQ. In HUVECs, the phosphorylation of eNOS at Ser1177 and increase in cytosolic NO level induced by nuciferine were mediated by extracellular Ca2+ influx. Under endothelium-free conditions, nuciferine attenuated CaCl2-induced contraction in Ca2+-free depolarizing medium. In the absence of extracellular calcium, nuciferine relieved the vasoconstriction induced by phenylephrine and the addition of CaCl2. Nuciferine also suppressed Ca2+ influx in Ca2+-free K+-containing solution in VSMCs. Conclusions and Implications Nuciferine has a vasorelaxant effect via both endothelium-dependent and -independent mechanisms. These results suggest that nuciferine may have a therapeutic effect on vascular diseases associated with aberrant vasoconstriction. Linked Articles This article is part of a themed section on Chinese Innovation in Cardiovascular Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-23

37 citations

Journal ArticleDOI
TL;DR: CNG channels, CNGA2 in particular, mediate beta-adrenoceptor agonist-induced endothelial Ca(2+) influx and subsequent vascular dilation.

37 citations

Journal ArticleDOI
TL;DR: In this paper, reduced graphene oxide-SiNodes (rGO-SiNW) heterostructures were synthesized through a metal-assisted electroless etching process and functionalized with reduced GAs flakes through a chemical absorption process to achieve greatly improved photocatalytic activity and stability.
Abstract: Silicon nanowires (SiNWs) have been widely studied as light harvesting antennas in photocatalysts due to their ability to absorb broad-spectrum solar radiation, but they are typically limited by poor photoelectrochemical stability. Here, we report the synthesis of reduced graphene oxide-SiNW (rGO-SiNW) heterostructures to achieve greatly improved photocatalytic activity and stability. The SiNWs were synthesized through a metal-assisted electroless etching process and functionalized with reduced graphene oxide (rGO) flakes through a chemical absorption process. Here, the rGO not only functions as a physical protection layer to isolate the SiNWs from the harsh electrochemical environment but also serves as a charge mediator to facilitate the charge separation and transport processes. Furthermore, the rGO may also function as a redox catalyst to ensure efficient utilization of photo-carriers for the desired chemical reactions. Photocatalytic dye degradation studies show that the photoactivity of the heterostructures can be significantly enhanced with an initial activation process and maintained without apparent decay over repeated reaction cycles. Electrochemical and photoelectrochemical studies indicate that the enhanced photoactivity and photostability can be attributed to the more efficient separation of photoexcited charge carriers in SiNWs and the reduced self-oxidation of the surface of the SiNWs during the photocatalytic dye degradation process. The ability to significantly improve the photocatalytic activity and stability in rGO-SiNW heterostructures can not only lead to more opportunities for the application of silicon-based photocatalysts/photoelectrodes for solar energy harvesting but also provide new insights into the stabilization of other unstable photocatalytic systems.

37 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations