scispace - formally typeset
Search or ask a question
Author

Yu Huang

Bio: Yu Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 136, co-authored 1492 publications receiving 89209 citations. Previous affiliations of Yu Huang include The Chinese University of Hong Kong & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the recent progress and challenges of 2D van der Waals interactions and offer a perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics.
Abstract: Two-dimensional layered materials (2DLMs) have been a central focus of materials research since the discovery of graphene just over a decade ago. Each layer in 2DLMs consists of a covalently bonded, dangling-bond-free lattice and is weakly bound to neighbouring layers by van der Waals interactions. This makes it feasible to isolate, mix and match highly disparate atomic layers to create a wide range of van der Waals heterostructures (vdWHs) without the constraints of lattice matching and processing compatibility. Exploiting the novel properties in these vdWHs with diverse layering of metals, semiconductors or insulators, new designs of electronic devices emerge, including tunnelling transistors, barristors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics and light-emitting devices with unprecedented characteristics or unique functionalities. We review the recent progress and challenges, and offer our perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics. With a dangling-bond-free surface, two dimensional layered materials (2DLMs) can enable the creation of diverse van der Waals heterostructures (vdWHs) without the conventional constraint of lattice matching or process compatibility. This Review discusses the recent advances in exploring 2DLM vdWHs for future electronics and optoelectronics.

1,850 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: In this article, surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M•Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium.
Abstract: Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M‐Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo‐Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73‐fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm2 and 0.096 A/mgPt). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.

1,499 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: In this paper, a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MN4C4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging, was reported.
Abstract: Single-atom catalysts (SACs) have recently attracted broad research interest as they combine the merits of both homogeneous and heterogeneous catalysts. Rational design and synthesis of SACs are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MN4C4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging. The unambiguous structure determination allows density functional theoretical prediction of MN4C4 moieties as efficient oxygen evolution catalysts with activities following the trend Ni > Co > Fe, which is confirmed by electrochemical measurements. Determination of atomistic structure and its correlation with catalytic properties represents a critical step towards the rational design and synthesis of precious or nonprecious SACs with exceptional atom utilization efficiency and catalytic activities.

1,305 citations

Journal ArticleDOI
16 Sep 2010-Nature
TL;DR: On-chip microwave measurements demonstrate that the self-aligned graphene transistors have a high intrinsic cut-off (transit) frequency of fT = 100–300 GHz, with the extrinsic fT largely limited by parasitic pad capacitance.
Abstract: Graphene has attracted considerable interest as a potential new electronic material. With its high carrier mobility, graphene is of particular interest for ultrahigh-speed radio-frequency electronics. However, conventional device fabrication processes cannot readily be applied to produce high-speed graphene transistors because they often introduce significant defects into the monolayer of carbon lattices and severely degrade the device performance. Here we report an approach to the fabrication of high-speed graphene transistors with a self-aligned nanowire gate to prevent such degradation. A Co(2)Si-Al(2)O(3) core-shell nanowire is used as the gate, with the source and drain electrodes defined through a self-alignment process and the channel length defined by the nanowire diameter. The physical assembly of the nanowire gate preserves the high carrier mobility in graphene, and the self-alignment process ensures that the edges of the source, drain and gate electrodes are automatically and precisely positioned so that no overlapping or significant gaps exist between these electrodes, thus minimizing access resistance. It therefore allows for transistor performance not previously possible. Graphene transistors with a channel length as low as 140 nm have been fabricated with the highest scaled on-current (3.32 mA μm(-1)) and transconductance (1.27 mS μm(-1)) reported so far. Significantly, on-chip microwave measurements demonstrate that the self-aligned devices have a high intrinsic cut-off (transit) frequency of f(T) = 100-300 GHz, with the extrinsic f(T) (in the range of a few gigahertz) largely limited by parasitic pad capacitance. The reported intrinsic f(T) of the graphene transistors is comparable to that of the very best high-electron-mobility transistors with similar gate lengths.

1,227 citations

Journal ArticleDOI
14 Jul 1989-Science
TL;DR: In arterial rings the vasorelaxing actions of the drugs diazoxide, cromakalim, and pinacidil and the hyperpolarizing actions of vasoactive intestinal polypeptide and acetylcholine were blocked by inhibitors of the ATP-sensitive K+ channels, suggesting that all these agents may act through a common pathway in smooth muscle by opening ATP- sensitivity channels.
Abstract: Vasodilators are used clinically for the treatment of hypertension and heart failure. The effects of some vasodilators seem to be mediated by membrane hyperpolarization. The molecular basis of this hyperpolarization has been investigated by examining the properties of single K+ channels in arterial smooth muscle cells. The presence of adenosine triphosphate (ATP)-sensitive K+ channels in these cells was demonstrated at the single channel level. These channels were opened by the hyperpolarizing vasodilator cromakalim and inhibited by the ATP-sensitive K+ channel blocker glibenclamide. Furthermore, in arterial rings the vasorelaxing actions of the drugs diazoxide, cromakalim, and pinacidil and the hyperpolarizing actions of vasoactive intestinal polypeptide and acetylcholine were blocked by inhibitors of the ATP-sensitive K+ channels, suggesting that all these agents may act through a common pathway in smooth muscle by opening ATP-sensitive K+ channels.

1,225 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations