scispace - formally typeset
Search or ask a question
Author

Yu Huang

Bio: Yu Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 136, co-authored 1492 publications receiving 89209 citations. Previous affiliations of Yu Huang include The Chinese University of Hong Kong & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that KCNQ channel opening is a powerful mechanism to produce vasorelaxation of systemic arteries in rats and mice and play a major role in the paracrine control of vascular tone by perivascular adipose tissue, which is at least in part mediated or modulated by H2S.
Abstract: BACKGROUND: Perivascular adipose tissue secretes an adipocyte-derived relaxing factor (ADRF) that opens voltage-dependent K (Kv) channels in peripheral arteries. We studied the role of KCNQ-type Kv channels and tested the hypothesis that hydrogen sulfide (H2S) could be an ADRF. METHODS: We performed isometric contraction studies on systemic arteries of rats and mice. RESULTS: In mesenteric arteries and aortas without perivascular adipose tissue, the KCNQ channel openers retigabine, VRX0530727, VRX0621238, and VRX0621688 produced concentration-dependent vasorelaxation; VRX0621688 was the most potent vasodilator. The KCNQ inhibitor XE991 (30 mumol/l) blocked the effects of both the drugs and ADRF. Inhibitors of cystathionine gamma lyase (CSE) beta-cyano-L-alanine (BCA, 5 mmol/l) and 4-propargyl glycine (PPG, 10 mmol/l) also blocked the relaxations. CSE is expressed in perivascular adipose tissue and endogenously generates H2S. The H2S donor NaHS produced concentration-dependent vasorelaxation, which was also blocked by XE991. The vasodilatory capacities of retigabine, VRX0530727, VRX0621238, and VRX0621688 were preserved following inhibition of H2S generation in perivascular fat. CONCLUSION: We suggest that KCNQ channel opening is a powerful mechanism to produce vasorelaxation of systemic arteries in rats and mice. Furthermore, KCNQ channels play a major role in the paracrine control of vascular tone by perivascular adipose tissue, which is at least in part mediated or modulated by H2S. In conditions of reduced H2S release from perivascular adipose tissue, these paracrine effects can be mimicked by synthetic KCNQ channel openers.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a novel Bi2O2CO3/ZnFe2O4 photocatalyst for NO removal under visible light irradiation and authenticate the formation of the above p-n heterojunction using an array of analytical techniques.
Abstract: Although bismuth subcarbonate (Bi2O2CO3), a member of the Aurivillius-phase oxide family, is a promising photocatalyst for the removal of gaseous NO at parts-per-billion level, the large band gap of this material restricts its applications to the UV light region. The above problem can be mitigated by heterojunction fabrication, which not only broadens the light absorbance range, but also inhibits the recombination of photogenerated charge carriers. Herein, we implement this strategy to fabricate a novel Bi2O2CO3/ZnFe2O4 photocatalyst for NO removal under visible light irradiation and authenticate the formation of the above p-n heterojunction using an array of analytical techniques. Notably, the above composite showed activity superior to those of its individual constituents, and the underlying mechanisms of this activity enhancement were probed by density functional theory calculations and photocurrent measurements. Elevated electron/hole separation efficiency caused by the presence of an internal electric field at the Bi2O2CO3/ZnFe2O4 interface was identified as the main reason of the increased photocatalytic activity, with the main active species were determined as center dot O-2(-) and center dot OH by electron spin resonance spectroscopy. Finally, cytotoxicity testing proved the good biocompatibility of Bi2O2CO3/ZnFe2O4. Thus, this work presents deep insights into the preparation and use of a green p-n heterojunction catalyst in various applications.

163 citations

Journal ArticleDOI
TL;DR: Taken together, TRPC3 channels could be directly phosphorylated by PKG at position T11 and S263, and this phosphorylation abolished the store-operated Ca2+ influx mediated by TR PC3 channels in HEK293 cells.
Abstract: Canonical transient receptor potential (TRPC) channels are Ca2+-permeable nonselective cation channels that are widely expressed in numerous cell types. Seven different members of TRPC channels have been isolated. The activity of these channels is regulated by the filling state of intracellular Ca2+ stores and/or diacylglycerol and/or Ca2+/calmodulin. However, no evidence is available as to whether TRPC channels are regulated by direct phosphorylation on the channels. In the present study, TRPC isoform 3 (TRPC3) gene was overexpressed in HEK293 cells that were stably transfected with protein kinase G (PKG). We found that the overexpressed TRPC3 mediated store-operated Ca2+ influx and that this type of Ca2+ influx was inhibited by cGMP. The inhibitory effect of cGMP was abolished by KT5823 or H8. Point mutations at two consensus PKG phosphorylation sites (T11A and S263Q) of TRPC3 channel markedly reduced the inhibitory effect of cGMP. In addition, TRPC3 proteins were purified from HEK293 cells that were transfected with either wild-type or mutant TRPC3 constructs, and in vitro PKG phosphorylation assay was carried out. It was found that wild-type TRPC3 could be directly phosphorylated by PKG in vitro and that the phosphorylation was abolished in the presence of KT5823. The phosphorylation signal was greatly reduced in mutant protein T11A or S263Q. Taken together, TRPC3 channels could be directly phosphorylated by PKG at position T11 and S263, and this phosphorylation abolished the store-operated Ca2+ influx mediated by TRPC3 channels in HEK293 cells.

162 citations

Journal ArticleDOI
12 Apr 2018-ACS Nano
TL;DR: The strategy presented here based on surface-assembled organic molecules may pave the way for realizing high-performance TMD-based photodetection with ultrafast speed and high sensitivity.
Abstract: As a direct-band-gap transition metal dichalcogenide (TMD), atomic thin MoS2 has attracted extensive attention in photodetection, whereas the hitherto unsolved persistent photoconductance (PPC) from the ungoverned charge trapping in devices has severely hindered their employment. Herein, we demonstrate the realization of ultrafast photoresponse dynamics in monolayer MoS2 by exploiting a charge transfer interface based on surface-assembled zinc phthalocyanine (ZnPc) molecules. The formed MoS2/ZnPc van der Waals interface is found to favorably suppress the PPC phenomenon in MoS2 by instantly separating photogenerated holes toward the ZnPc molecules, away from the traps in MoS2 and the dielectric interface. The derived MoS2 detector then exhibits significantly improved photoresponse speed by more than 3 orders (from over 20 s to less than 8 ms for the decay) and a high responsivity of 430 A/W after Al2O3 passivation. It is also demonstrated that the device could be further tailored to be 2–10-fold more sensi...

159 citations

Journal ArticleDOI
TL;DR: The literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model are brief.
Abstract: Interest in relationship between diet and ageing is growing Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS), which are believed to be the factors causing ageing of an organism To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model

157 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations