scispace - formally typeset
Search or ask a question
Author

Yu Huang

Bio: Yu Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 136, co-authored 1492 publications receiving 89209 citations. Previous affiliations of Yu Huang include The Chinese University of Hong Kong & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the mechanism by which hawthorn fruit decreases serum cholesterol involves, at least in part, the inhibition of cholesterol absorption mediated by down-regulation of intestinal ACAT activity.
Abstract: The present study examined the hypolipidemic activity of hawthorn fruit. New Zealand white rabbits were fed one of three diets, a reference diet with no cholesterol added (NC), a high cholesterol diet (1 g/100 g, HC) and a HC diet supplemented with 2 g/100 g hawthorn fruit powder (HC-H). After 12 wk, serum total cholesterol (TC) and triacylglycerols (TG) were 23.4 and 22.2% lower, respectively, in the hawthorn fruit group compared with the HC rabbits (P < 0.05). Hawthorn supplementation led to 50.6% less cholesterol accumulation in aorta (P < 0.05) and 23-95% greater excretion of neutral and acidic sterols (P < 0.05). Supplementation of hawthorn fruit did not affect the activities of hepatic 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA-R) or cholesterol 7alpha-hydroxylase (CH) but it suppressed the activity of intestinal acyl CoA:cholesterol acyltransferase (ACAT, P < 0.05). The results suggest that the mechanism by which hawthorn fruit decreases serum cholesterol involves, at least in part, the inhibition of cholesterol absorption mediated by down-regulation of intestinal ACAT activity.

101 citations

Journal ArticleDOI
TL;DR: It is demonstrated that adipocyte-derived adiponectin is required for PPARγ-mediated improvement of endothelial function in diabetes, and the adipose tissue represents a promising target for treating diabetic vasculopathy.

101 citations

Journal ArticleDOI
TL;DR: The hyperpolarizing effect of TRPC1-BKCa coupling could serve to reduce agonist-induced membrane depolarization, thereby preventing excessive contraction of VSMCs to contractile agonists.
Abstract: TRPC1 (transient receptor potential canonical 1) is a Ca(2+)-permeable cation channel involved in diverse physiological function. TRPC1 may associate with other proteins to form a signaling complex, which is crucial for channel function. In the present study, we investigated the interaction between TRPC1 and large conductance Ca(2+)-sensitive K(+) channel (BK(Ca)). With the use of potentiometric fluorescence dye DiBAC(4)(3), we found that store-operated Ca(2+) influx resulted in membrane hyperpolarization of vascular smooth muscle cells (VSMCs). The hyperpolarization was inhibited by an anti-TRPC1 blocking antibody T1E3 and 2 BK(Ca) channel blockers, charybdotoxin and iberiotoxin. These data were confirmed by sharp microelectrode measurement of membrane potential in VSMCs of intact arteries. Furthermore, T1E3 treatment markedly enhanced the membrane depolarization and contraction of VSMCs in response to several contractile agonists including phenylephrine, endothelin-1, and U-46619. In coimmunoprecipitation experiments, an antibody against BK(Ca) alpha-subunit [BK(Ca)(alpha)] could pull down TRPC1, and moreover an anti-TRPC1 antibody could reciprocally pull down BK(Ca)(alpha). Double-labeling immunocytochemistry showed that TRPC1 and BK(Ca) were colocalized in the same subcellular regions, mainly on the plasma membrane, in VSMCs. These data suggest that, TRPC1 physically associates with BK(Ca) in VSMCs and that Ca(2+) influx through TRPC1 activates BK(Ca) to induce membrane hyperpolarization. The hyperpolarizing effect of TRPC1-BK(Ca) coupling could serve to reduce agonist-induced membrane depolarization, thereby preventing excessive contraction of VSMCs to contractile agonists.

100 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1277 moreInstitutions (142)
TL;DR: In this paper, the authors perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state, and find that all scenarios from prompt collapse to long-lived or even stable remnants are possible.
Abstract: GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.

100 citations

Journal ArticleDOI
TL;DR: It is demonstrated that SExos deliver arginase 1 protein to endothelial cells, representing a cellular mechanism during development of diabetic endothelial dysfunction, and the results expand the scope of blood-borne substances that monitor vascular homeostasis.
Abstract: Exosomes, abundant in blood, deliver various molecules to recipient cells. Endothelial cells are directly exposed to circulating substances. However, how endothelial cells respond to serum exosomes (SExos) and the implications in diabetes-associated vasculopathy have never been explored. In the present study, we showed that SExos from diabetic db/db mice (db/db SExos) were taken up by aortic endothelial cells, which severely impaired endothelial function in nondiabetic db/m+ mice. The exosomal proteins, rather than RNAs, mostly account for db/db SExos-induced endothelial dysfunction. Comparative proteomics analysis showed significant increase of arginase 1 in db/db SExos. Silence or overexpression of arginase 1 confirmed its essential role in db/db SExos-induced endothelial dysfunction. This study is a demonstration that SExos deliver arginase 1 protein to endothelial cells, representing a cellular mechanism during development of diabetic endothelial dysfunction. The results expand the scope of blood-borne substances that monitor vascular homeostasis.

100 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations