scispace - formally typeset
Search or ask a question
Author

Yu Huang

Bio: Yu Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 136, co-authored 1492 publications receiving 89209 citations. Previous affiliations of Yu Huang include The Chinese University of Hong Kong & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: Hydrophilic/superhydrophobic patterned surfaces with efficient water collection could be successfully developed inspired by Namib Desert beetles and mussels, showing the potential for real-world industrialization in a large scale.
Abstract: Namib Desert beetles harvest water from harsh environments by using their hydrophilic-hydrophobic dorsal surfaces. Generally, Cassie-state superhydrophobic materials are chosen as substrates to prepare bioinspired (super)hydrophilic/(super)hydrophobic patterned surfaces. However, due to the low adhesion and strong repellency, aqueous solution cannot be directly set on Cassie superhydrophobic materials until the dropping volume is larger than 6.5 μL. Therefore, arranging a (super)hydrophilic substance on Cassie superhydrophobic substrates to construct (super)hydrophilic/superhydrophobic patterned surfaces still remains a challenge. In this work, by prewetting with dichloromethane (DCM), the mussel-inspired hydrophilic and bio-adhesive dopamine solution (DA) could be dripped onto a Cassie superhydrophobic Cu surface with an ultralow volume of 0.1 μL, whereby low surface tension DCM would "cloak" the high surface tension DA. Along with DCM volatility, DA was adhered on the Cassie superhydrophobic surface and would then self-polymerize into hydrophilic polydopamine domains, thus hydrophilic/superhydrophobic patterned surfaces with efficient water collection could be successfully developed inspired by Namib Desert beetles and mussels. The bioinspired materials show the potential for real-world industrialization in a large scale, which is of great significance for providing living security for those living in areas with no access to fresh water.

63 citations

Journal ArticleDOI
Daowei He1, Yiliu Wang, Yu Huang, Yi Shi1, Xinran Wang1, Xiangfeng Duan 
TL;DR: The noncovalent van der Waals interface between C8-BTBT and BP effectively preserves the intrinsic properties of BP, allowing us to demonstrate high-performance BP FETs with a record-high current density, hole drift velocity, and on/off ratio at room temperature.
Abstract: Two-dimensional layered materials (2DLMs) are of considerable interest for high-performance electronic devices for their unique electronic properties and atomically thin geometry. However, the atomically thin geometry makes their electronic properties highly susceptible to the environment changes. In particular, some 2DLMs (e.g., black phosphorus (BP) and SnSe2) are unstable and could rapidly degrade over time when exposed to ambient conditions. Therefore, the development of proper passivation schemes that can preserve the intrinsic properties and enhance their lifetime represents a key challenge for these atomically thin electronic materials. Herein we introduce a simple, nondisruptive, and scalable van der Waals passivation approach by using organic thin films to simultaneously improve the performance and air stability of BP field-effect transistors (FETs). We show that dioctylbenzothienobenzothiophene (C8-BTBT) thin films can be readily deposited on BP via van der Waals epitaxy approach to protect BP against oxidation in ambient conditions over 20 d. Importantly, the noncovalent van der Waals interface between C8-BTBT and BP effectively preserves the intrinsic properties of BP, allowing us to demonstrate high-performance BP FETs with a record-high current density of 920 μA/um, hole drift velocity over 1 × 107 cm/s, and on/off ratio of 1 × 104 to ∼1 × 107 at room temperature. This approach is generally applicable to other unstable two-dimensional materials, defining a unique pathway to modulate their electronic properties and realize high-performance devices through hybrid heterojunctions.

63 citations

Journal ArticleDOI
TL;DR: The results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.

63 citations

Journal ArticleDOI
TL;DR: It is found that EGCG may protect heart against doxorubicin-induced myocyte injury by improving Ca(2+) handling through scavenging reactive oxygen species.

63 citations

Journal ArticleDOI
01 May 2016-Diabetes
TL;DR: This study demonstrates for the first time to the knowledge that miR-200c is a new mediator of diabetic endothelial dysfunction and inhibition of miR -200c rescues EDRs in diabetic mice, and suggests the potential usefulness ofmiR- 200c as the target for drug intervention against diabetic vascular complications.
Abstract: Endothelial dysfunction plays a crucial role in the development of diabetic vasculopathy. Our initial quantitative PCR results showed an increased miR-200c expression in arteries from diabetic mice and patients with diabetes. However, whether miR-200c is involved in diabetic endothelial dysfunction is unknown. Overexpression of miR-200c impaired endothelium-dependent relaxations (EDRs) in nondiabetic mouse aortas, whereas suppression of miR-200c by anti-miR-200c enhanced EDRs in diabetic db/db mice. miR-200c suppressed ZEB1 expression, and ZEB1 overexpression ameliorated endothelial dysfunction induced by miR-200c or associated with diabetes. More importantly, overexpression of anti-miR-200c or ZEB1 in vivo attenuated miR-200c expression and improved EDRs in db/db mice. Mechanistic study with the use of COX-2(-/-) mice revealed that COX-2 mediated miR-200c-induced endothelial dysfunction and that miR-200c upregulated COX-2 expression in endothelial cells through suppression of ZEB1 and increased production of prostaglandin E2, which also reduced EDR. This study demonstrates for the first time to our knowledge that miR-200c is a new mediator of diabetic endothelial dysfunction and inhibition of miR-200c rescues EDRs in diabetic mice. These new findings suggest the potential usefulness of miR-200c as the target for drug intervention against diabetic vascular complications.

63 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations